Candidate for a self-correcting quantum memory in two dimensions

An interesting problem in the field of quantum error correction involves finding a physical system that hosts a "self-correcting quantum memory," defined  as an encoded qubit  coupled to an environment that naturally wants to correct errors.  To date, a quantum memory stable against finite-temperature effects is only known in four spatial dimensions or higher. Here, we take a different approach to realize a  stable  quantum memory by relying on a driven-dissipative environment.