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We upper bound and lower bound the optimal precision with which one can estimate an unknown
Hamiltonian parameter via measurements of Gibbs thermal states with a known temperature. The bounds
depend on the uncertainty in the Hamiltonian term that contains the parameter and on the term’s degree of
noncommutativity with the full Hamiltonian: higher uncertainty and commuting operators lead to better
precision. We apply the bounds to show that there exist entangled thermal states such that the parameter can
be estimated with an error that decreases faster than 1//n, beating the standard quantum limit. This result
governs Hamiltonians where an unknown scalar parameter (e.g., a component of a magnetic field) is
coupled locally and identically to n qubit sensors. In the high-temperature regime, our bounds allow for
pinpointing the optimal estimation error, up to a constant prefactor. Our bounds generalize to joint
estimations of multiple parameters. In this setting, we recover the high-temperature sample scaling derived
previously via techniques based on quantum state discrimination and coding theory. In an application, we
show that noncommuting conserved quantities hinder the estimation of chemical potentials.
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Substantial work has been devoted to determining the
precision with which a Hamiltonian parameter can be
estimated from measurements on a time-evolving system.
For instance, consider a spin network immersed in a
magnetic field x. The network’s state acquires information
about the field’s magnitude. Measuring copies of the state
can reveal p. The quantum Cramér-Rao bound sets an
asymptotically saturable lower bound on the precision with
which the parameter can be estimated [1,2]. In this
dynamical setting, squeezed states of light and entangled
states can serve as metrological resources [3.4].

Here, we focus on the less explored problem of estimat-
ing parameters from systems in a thermal state

at a known inverse temperature f. @; and |[j) are
the Hamiltonian’s eigenvalues and eigenvectors, H =
2. wili)(jl, and Zg = Tr(e ") is the partition function.
The parameters of H could be unknown. Thermalization
to p is the typical outcome of interactions with environ-
ments [5,6]. Probing the environment could yield informa-
tion about /3 [7]. The system could also thermalize to p, in a
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range of platforms including superconducting qubits and
neutral atoms, through state-preparation protocols [8—10].

The thermal state encodes information about the
Hamiltonian parameters. In this Letter, we explore the
extent to which thermal states constitute good metrological
resources for estimating Hamiltonian parameters. This
approach complements the literature devoted to the met-
rological power of time-evolving quantum states.

We consider M-term Hamiltonians:

M M
H:;lelz:;ﬂzf\z- (2)

The A; are Hermitian operators, and the y; are real
coefficients. The y; could represent local or global fields
or coupling constants (Fig. 1). We bound the precision with
which the u; can be estimated from measurements of copies
of p. To achieve this goal, we will use the multiparameter
quantum Cramér-Rao bound, which constrains the estima-
tion of a set of parameters [11].

The quantum Cramér-Rao bound relates the minimum
estimation error to the quantum Fisher information [12].
The quantum Cramér-Rao bound has been applied, for
example, to the field of thermometry [7,13—19]. The bound
implies the minimum uncertainty with which a temperature
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FIG. 1. Estimating Hamiltonian parameters from thermal states.
How accurately can one determine 4;, which can be a coupling
constant—pictured here as yellow and teal dashed lines for a
system of qubits on a lattice—or a field, in a Hamiltonian H from
measurements performed on N copies of a thermal state
p = e /757 We use the quantum Cramér-Rao bound to derive
saturable upper and lower bounds on the optimal precision with
which such Hamiltonian parameters can be estimated.

T can be estimated from A’ measurements: var(f'opt) =
T*{1/[N(AH)?]}, where (AH)?:=(H?*)—(H)? is the
Hamiltonian’s variance in the thermal state [11].
Whenever x denotes a parameter to be estimated, we mean
by X an estimator. Higher energy variances allow for better
parameter estimation. This result echoes the relative error
var(floy)/u* = {1/[AN?(AH)*} with which a global
parameter ¢ can be estimated from measurements of copies
of a pure state evolving under the Hamiltonian H = uA for
a time . In related work, Refs. [20,21] geometrically
characterize the Fisher metric to study the role of phase
transitions in thermometry. This Letter focuses on the error
in estimates of an arbitrary Hamiltonian parameter, rather
than the error in temperature estimation.

Several studies have concerned the reconstruction of a
Hamiltonian from its eigenstates [22-28], from steady
states [29], or from Gibbs states [28,30]. Recent results
under the umbrella of the “Hamiltonian-learning problem”
provide algorithms for estimating Hamiltonian parameters
while minimizing (i) the number of copies of the thermal
state p needed (the sample complexity) and (ii) the algo-
rithm’s runtime (the time complexity) [31-34]. Such
complexity-theoretic approaches focus on (a) the asymp-
totic sample and time complexities’ dependence on f and
(b) the number of unknown parameters. In contrast, we
leverage the quantum Cramér-Rao bound to identify how
the uncertainties in the A;’s, and the noncommutativity of
the A;’s with the thermal state, influence the minimum
precision with which the p; can be estimated. Upon
pinpointing the uncertainties’ influence on precision, we
can construct a many-body model that beats the standard
quantum limit.

This Letter is organized as follows. First, we review the
quantum Fisher information, a powerful tool for analyzing

parameter estimation. We bound the quantum Fisher
information obtainable about one Hamiltonian parameter,
then bound the precision with which the parameter can be
estimated. These bounds enable us to identify a many-body
model in which the achievable precision beats the standard
quantum limit. Extending beyond one Hamiltonian para-
meter, we then bound the precision with which multiple
parameters can be estimated simultaneously. Finally, we
discover that noncommutation of conserved quantities
(charges) hinders the estimation of chemical potentials.
Noncommuting charges are particularly quantum (due to
the importance of noncommutation in quantum measure-
ment disturbance, Heisenberg uncertainty, etc.) and have
been of recent thermodynamic interest [35].

The quantum Fisher information matrix—The multi-
parameter quantum Cramér-Rao bound constrains the

statistics of any estimator ,L:i of the parameters y; [11]:
cov(u) > —j’-" - 3
()2 5 G)

N denotes the number of experimental repetitions. F
denotes the quantum Fisher information matrix, with
components

pj + Pk

The state eigendecomposes as p = ) : p;|j){j|- Thus, the
quantum Fisher information matrix characterizes the pre-
cision with which parameters y; can be estimated jointly.
The multiparameter quantum Cramér-Rao bound is satu-
rated when the optimal measurements for estimating the y;
are compatible. Mathematically, this condition is met if and
only if Tr(p[L; L,]) =0. The symmetric logarithmic
derivative L, is implicitly defined by d,p=: 1{p, L,} [11].
Throughout this work, we denote partial derivatives by
0; = (9/ouy).

The diagonal matrix element F; quantifies the minimum
precision with which one unknown y; can be estimated if
all other parameters are known. The single-parameter
quantum Cramér-Rao bound says that every estimator j;
has a variance

. 1
var(fi) > NF, (5)
Optimized measurements saturate this bound [2,12].
Equations (3) and (5) thus pinpoint the quantum Fisher
information as a powerful tool that determines ultimate
limits on quantum metrology. The stronger p’s dependency
on y;, the higher the quantum Fisher information F
[Eq. (4)], and so the greater the precision.

Bounds on the quantum Fisher information—Exactly
evaluating the quantum Fisher information in Eq. (4) can be
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difficult, requiring knowledge of the Hamiltonian’s spec-
trum and eigenstates. Therefore, it is desirable to bound F;
in terms of more-easily-calculable quantities. We derive
two sets of upper and lower bounds on the quantum Fisher
information of the y; in Eq. (2):
Fu S P(AA)? (6a)
Fu 2 4 ci(AA)), (6b)

and
1
Fu < 2de (A0 = 3IVAL) and (72
Fuz 088 ((AA»Z .y [xﬁfh]ll%)- (7b)

AA; = /(A7) — (A;)? is the uncertainty of operator A; in
Al|3 == Tr(AA"); and we have defined

s
¢y = tanh*(B||H||,/2)/(B||H|;)* and  (8a)
¢y = 2c; cosh(f||H|[;/2). (8b)

The ||H||, := max;w; — min;w; is the Hamiltonian semi-
norm defined by the maximum energy gap. We derive the
bounds by computing the thermal state’s quantum Fisher
information, then algebraically manipulating the expres-
sion (Appendix II in the Supplemental Material [36]).

Equation (6) constrains the quantum Fisher information
about y; in terms of AA;, resembling expressions for the
quantum Fisher information about f in thermometry [11].
Equation (7) constrains the quantum Fisher information
about y; also in terms of the Wigner-Yanase skew infor-
mation 3 [|[,/p., A,]||3. The skew information was proposed
as a means to discriminate quantum and classical contri-
butions to uncertainty [46,47]. It has found applications
in parameter estimation [15,48,49], as an asymmetry
measure [50], and as a coherence measure [51,52]. The
difference (AA;)* —1||[\/p.A/]|)3 signifies the classical
uncertainty about A; [47]. This classical uncertainty van-
ishes for pure states. We emphasize that the bounds in
Egs. (6) and (7) are mathematically distinct—neither is
tighter than the other in all regimes.

When the temperature is high relative to the maximum
energy gap (f||H||; < 1), ¢; & ¢,/2 =~ 1/4. The upper and
lower bounds in Eq. (6) coincide, while the upper and lower
bounds in Eq. (7) differ by a prefactor of 1.2. That is, our
bounds are saturated, up to a constant prefactor, at high
temperatures. Our bounds pinpoint F; by tightly sand-
wiching it.

The upper bound (7a) is also saturable, up to a constant
prefactor, at low temperatures. To show this, we denote

by u the magnitude of a field uo, acting on a qubit
with a Hamiltonian H = Q,6, + Q.0, 4+ uo,. The o,’s
are Pauli matrices. The quantum Fisher information and
its upper bound (7a) can be calculated exactly. At low
temperatures (5||H||,> 1), F, ~ 16Q2/||H||} < 2.4¢,4* x
((A4)? =3[P, Allll3) » 19297/ || H]|§; and, at high
temperatures (B||H||, < 1), F, = p* <2.4c,4*((AA)* -
1P Allll3) ~ 1.28* (Appendix IV in the Supplemental
Material [36]). The contribution of the Wigner-Yanase
skew information is necessary for obtaining a saturable
bound at low temperatures.

Reference [15] contains the closest previous result:
Fu <P [y Tr(p*8A;p'~95A;,)da, with SA;=A, — (A)).
Yet our upper bounds (6a), (7a), and the bound in
Ref. [15] are different: again, no bound is tighter than
another in all regimes. To our knowledge, Eqs. (6b)
and (7b) are the first lower bounds on thermal states’
quantum Fisher information. We demonstrate this explicitly
using a spin-chain example in Appendix V of the
Supplemental Material [36].

Bounds on single-parameter estimation errors—
Consider estimating an unknown parameter y;. We denote
the optimal error by /varyy(ji;). The single-parameter
quantum Cramér-Rao bound (5) is saturable by suitably
chosen estimators [12]. Therefore, Egs. (6) and (7) engen-

der two sets of upper and lower bounds on /var(ji;).

The relative error [y/var,,(i;)/|u|] achievable with N
copies of a thermal state is

1 Varopt (ﬁl) < 1

N
ﬁ\/NAH,S il T 2pcl/*VNAH, ®)
and
1

V2AcpVN ((AH)? =L |[y/p. H]|3)'?
< Varopt(ﬁl)
B ||

: (10)

= VORPN(AH): ~L([vp HID)

By Eq. (9), a higher uncertainty AH,; in H; = y;A; can
enable better precision. Meanwhile, Eq. (10) constrains the
relative error in terms of the classical uncertainty in
H;, = uA;. Equation (10) also reveals the role of non-
commutativity: when A; does not commute with p, the
ability to estimate y; diminishes. This fact has an analogue
in single-parameter estimation in unitary quantum metrol-
ogy, as detailed in Appendix III of the Supplemental
Material [36]. There, u; can be encoded in a probe
state via Hamiltonian evolution under H = u;A; + H',
for an arbitrary Hermitian H’'. If [A;, H|] # O0—and so
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[p, H| # 0 for thermal states p—the ability to measure y; is
diminished [53].

In quantum metrology, the estimation error’s scaling
with a sensor’s size can constitute an entanglement advan-
tage. Consider a system of n subsystems and H; a sum of n
local terms. Superextensive variances (AH;)> ~ n%, with
a > 1, are atypical for thermal states of spatially local
Hamiltonians. For instance, (AH;)> ~n for states with
exponentially decaying correlations [54,55]. From Eq. (9),
one would expect the optimal estimation error to scale as

1/(pVN\/n), as in the standard quantum limit [56,57].
This conclusion is consistent with Ref. [58], which implies
that the standard quantum limit cannot be beaten with
measurements of locally gapped Hamiltonian ground
states. At critical points, however, (AH;)?> ~n may be
violated [21,59,60]. We can observe violations also with
certain nonlocal Hamiltonians.

We now show that one can beat the standard quantum
limit in Hamiltonian metrology using thermal states.
Consider estimating a field u by measuring copies
of a thermal state of the n-qubit Hamiltonian H =
pd i (ot +1) =A@, nox=H, + H,.
A>0 and u>0. Let |0) denote the n-fold tensor
product of the eigenvalue-(—1) eigenstate of o; and |1),
the product of the eigenvalue-1 eigenstate. The n-qubit
Greenberger—Horne—Zeilinger (GHZ) state |®) = (|0) +
I1))/+/2 is a ground state of H,. We prove in Appendix VI
of the Supplemental Material [36] that |®) is the unique
ground state if H, is a perturbation (/4 < 1). The variance
of H, in |®) is (®|H2|®) — (®|H,|®)? = u*n®. Therefore,
one might expect that AH,, ~ un®, with a > 1/2, in low-
temperature thermal states. In Appendix IV of the
Supplemental Material [36], we prove this expectation,
showing that o« =1 for fAn > 1. Note this proof does
not require that u/A < 1. By Egs. (9) and (10), this
result suggests a minimum relative estimation error that
decreases faster than the standard quantum limit 1/+/7.
Figure 2 supports this argument, exhibiting a regime with
optimal relative estimation errors below 1/y/n. These
results would have been difficult to deduce from the
expression (4) for the quantum Fisher information. By
leveraging our bounds, we found a model that beats the
standard quantum limit. While we have not found a
metrological advantage over, e.g., GHZ states, thermal
states are more prevalent, and we find it insightful to learn
that they can serve as metrological resources.

Bounds on multiparameter estimation errors—The sin-
gle-parameter bounds above apply when all parameters
except the target parameter are known. However, our
results imply bounds on the error in joint estimates of M
Hamiltonian parameters. The variances’ sum serves as the
error measure. We aim for a total error M, var(fi;) = €.
By the multiparameter Cramér-Rao bound (3),

We assume

Relative estimation error vs. number of qubits

07c e Lower bound in Eq. (9)
F -- Upper bound in Eq. (10)
-- Lower bound in Eq. (10)
——Relative estimation error
o Fit ~n 08

1/2

) . Standard quantum limit ~ n~

15

FIG. 2. Beating the standard quantum limit. The figure shows
the relative estimation error y/var,y (t)/|u| for the parameter y in
the n-qubit H =u3"(cl+1)—AQ®" nok:=H,+H, The
bounds appear in Eqgs. (9) and (10) [the upper bound in (9) is,
here, too loose to appear in the plotted range]. We take
AP = 2up = 6. As we show in Appendix VI of the Supplemental
Material [36], AH, ~ un, for large pin. A consequence, sug-
gested by Eqgs. (9) and (10), is an optimal estimation error that
decays faster than 1//n.

M
2, = Zvaryl >—Tr(.7-" )_%Zi. (11)

= Fu

The final inequality holds under the condition F > O,
satisfied if one can estimate every linear combination of
parameters [11]. The second inequality is useful for large
M, when calculating F~! is computationally hard.

The second inequality is saturated if and only if F is
diagonal. The first inequality is saturated if and only if
Tr(p[L;, L,]) =0 [11,37], which occurs when

S PP w0 (12)
( )

2
u)j¢a)k (1)/- - wk) (pJ + Pk

for all {/,m}, where p; = e Po; /Zs. These are rather
stringent conditions violated by typical many-body
Hamiltonians.

By combining Eq. (11) with the inequalities (6a) and
(7a), we bound the error in the estimation of multiple
Hamiltonian parameters. To learn M Hamiltonian param-
eters with an error €., one needs a number N of
measurements satisfying

! f: _1/2 and  (13a)
—/)726%” =1 ||[\/_ A ]HZ
M
(13b)

_ﬁ2€grrl 1 AAl)z'

Consequently,
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A= @ " (a4 > (14

We can compare Eq. (14) to complexity-theoretic
results [31,32] about the number A of copies of the state
required to learn M Hamiltonian parameters to within an /,-
distance error € defined through € =YY (4, — p;)*. At
least N = Q{[exp(B)M]/[p*€*]} samples are required for a
Hamiltonian with M terms [32]. At low temperatures, their
bound is tighter, as a function of . Moreover, we have only
proven Eq. (13) to be saturable under stringent conditions
on the operators A;. They prove a stronger result: N =
O[(M/B*e€*)In (M /§)] samples suffice to learn the param-
eters with a constant failure probability 6. In contrast, our
results are more general since they concern the average error
in estimations of parameters in arbitrary Hamiltonians. Also,
our results reveal the roles of uncertainties AA;, and of the
state’s noncommutativity with A;, in the estimation error. We
compare this Letter’s bounds with previous bounds in detail
in Appendix VIII (see Table I) of the Supplemental
Material [36].

Estimation of chemical potentials—In the presence of
conserved charges Q;, thermalizing systems reach gener-
alized Gibbs states [61-64]

Py = P02, (15)
H, is the system Hamiltonian. The y; are the chemical
potentials corresponding to the charges, which satisfy
[Hy, Q;] = 0 for all [.

Our results imply constraints on the minimum error in
estimations of the chemical potentials: we identify H =
Ho+ >, 0, and A;=Q, in Eq. (1). For example,
consider estimating one y;. Equations (7), with the quantum
Cramér-Rao bound’s saturability, imply

1

24¢,2N ((80)* = 1I[vp. ClIB3)
1

T 08N ((A0) =5 I[vp. QI13)

(16)

< Varopt( )

Classically, all charges commute with each other and so
with p. Quantum charges can defy this expectation:
[0/, 0,,] #0 [62,63,65,66]. For instance, the two-qubit
Hamiltonian Hy=0_,® o, conserves charges Q| =0, @ 1
and O, = 0, ® o, that do not commute with each other.
This noncommutation prevents charges from commuting
with the state: [Q), /p] # 0. This lack of equality implies a
quantum disadvantage in parameter estimation: charges’
noncommutativity hinders the ability to measure chemical
potential x;. We inferred this hindrance from the bounds in
Eq. (10). It is unclear whether the hindrance can be inferred
from Eq. (9), which singles out uncertainty, instead of
noncommutativity. This observation underscores how the

bounds in Egs. (9) and (10) are inequivalent and provide
different lessons in different contexts.

Discussion—Our bounds highlight how estimation error
depends on the uncertainty and noncommutativity of the
operators defining the Hamiltonian. The noncommutativ-
ity engenders a disadvantage, diminishing precision. See
Eq. (10) and Appendix III of the Supplemental Material
[36] for a comparison with the estimation of parameters
from Hamiltonian evolution.

Furthermore, we found that noncommutativity of con-
served charges hinders estimations of chemical potentials.
This result contrasts with Refs. [66,67], which show that
conserved quantities’ noncommutativity provides an ad-
vantage in quantum transport processes by decreasing
entropy production. Our work therefore contributes to
the debate about whether noncommuting charges enhance
or hinder desirable properties in information-processing
and thermodynamic tasks [35,68].

A natural open problem concerns the bounds’ saturability.
What concrete protocols saturate the bounds? Also, do
single-shot or global measurements of A copies p®V
saturate the bounds [69,70]? Moreover, we found a toy
model where, using measurements on a thermal state, one
can beat the standard quantum limit for the task of estimating
(a component of) a field coupled locally to n qubits. Further
work is needed to determine whether one can use thermal
states of more-physically-realistic, fully local Hamiltonians
to beat the standard quantum limit, possibly by exploiting
criticality [21,59,60,71,72]. Finally, it would be interesting
to explore the implications of our work toward the complex-
ity of learning thermal states [73,74].

Note added—Reference [75], which studies the
Hamiltonian learning problem at all temperatures, was
posted during the preparation of this manuscript.
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