
The Second Moment of Hafnians in Gaussian Boson Sampling

Adam Ehrenberg,1, 2 Joseph T. Iosue,1, 2 Abhinav Deshpande,3 Dominik Hangleiter,1 and Alexey V. Gorshkov1, 2

1Joint Center for Quantum Information and Computer Science,
NIST/University of Maryland College Park, Maryland 20742, USA

2Joint Quantum Institute, NIST/University of Maryland College Park, Maryland 20742, USA
3IBM Quantum, Almaden Research Center, San Jose, California 95120, USA

(Dated: March 22, 2024)

Gaussian Boson Sampling is a popular method for experimental demonstrations of quantum ad-
vantage, but many subtleties remain in fully understanding its theoretical underpinnings. An im-
portant component in the theoretical arguments for approximate average-case hardness of sampling
is anticoncentration, which is a second-moment property of the output probabilities. In Gaussian
Boson Sampling these are given by hafnians of generalized circular orthogonal ensemble matrices. In
a companion work [arXiv:2312.08433], we develop a graph-theoretic method to study these moments
and use it to identify a transition in anticoncentration. In this work, we find a recursive expression
for the second moment using these graph-theoretic techniques. While we have not been able to
solve this recursion by hand, we are able to solve it numerically exactly, which we do up to Fock
sector 2n = 80. We further derive new analytical results about the second moment. These results
allow us to pinpoint the transition in anticoncentration and furthermore yield the expected linear
cross-entropy benchmarking score for an ideal (error-free) device.

CONTENTS

I. Introduction 1

II. The output distribution of Gaussian boson
sampling 3
A. Gaussian boson sampling 3
B. Moments of the Gaussian Boson Sampling

distribution and their significance 3
C. Summary of Results 4

III. Graph-theoretical analysis of Gaussian Boson
Sampling moments 5
A. First Moment 5
B. Second moment 6

IV. Recursion for the second moment 7

V. Analysis of the second moment 9
A. Numerical Evaluation of the Recursion 9
B. Scaling of the Second Moment 10

VI. Locating the Transition in Anticoncentration 12

VII. Conclusion 14

Acknowledgments 15

References 15

A. Classical Complexity of Evaluating Recursion 17

B. Building the Recursion 18
1. Base Cases for Recursion 19
2. Cases (1)–(4) 21
3. Cases (5)–(12) 21
4. Cases (13)–(16) 23
5. Case (17) 25

C. Computing Individual Coefficients 26
1. Leading Order Coefficient c2n 27
2. First Subleading Coefficient c2n−1 27

D. Alternative method for computing coefficients
ci 32
1. Computing c1 33

I. INTRODUCTION

One of the major goals of quantum computer science
is to find examples of certain tasks on which quantum
devices can outperform classical computers. While the
ultimate goal is to develop quantum computers that can
run, say, Shor’s algorithm [1], the qubit numbers, gate
fidelities, and error correction needed to accomplish such
a task fault-tolerantly are well beyond the current state
of the art. Therefore, there is interest in finding near-
term examples of quantum advantage.

One area of focus that has strong theoretical evi-
dence for an exponential speedup over the best possi-
ble classical algorithms comprises the so-called sampling
problems. Aaronson and Arkhipov introduced one such
promising framework called Boson Sampling [2]. The
Boson Sampling task is to produce a sample (that is, a
valid output Fock state) according to the outcome dis-
tribution generated by measuring indistinguishable pho-
tons that have been subjected to a random linear opti-
cal network of beam-splitters and phase shifters. In Bo-
son Sampling, the input states consist of single photons
on many input modes. However, because single-photon
sources have imperfect efficiency, these states are diffi-
cult to produce experimentally, requiring an exponen-
tial amount of post-selection [3]. Therefore, generalizing
this framework to other inputs that are more reliably
produced has been an important topic of study.

Gaussian Boson Sampling represents one such popu-

ar
X

iv
:2

40
3.

13
87

8v
1

 [
qu

an
t-

ph
]

 2
0

M
ar

 2
02

4

https://arxiv.org/abs/2312.08433

2

lar generalization. There, the input states are quadratic,
meaning they are generated from the vacuum by some
combination of displacement and squeezing (assuming
pure input states that have no thermal contribution)
[4]. Typically, the displacements are ignored because
they do not contribute to entanglement between the
modes. Hence, the input states are simply squeezed vac-
uum states, which are much easier to prepare in a lab
than many parallel single-photon states [3]. Much the-
oretical work has been done to generalize the original
statements from Ref. [2] about the computational com-
plexity of sampling in the Fock basis to this Gaussian
setting [5–11]. In due course, many labs have performed
experiments claiming to show quantum advantage using
Gaussian Boson Sampling [12, 13].

Broadly speaking, the hardness of sampling schemes in
general, and therefore of both Fock state and Gaussian
Boson Sampling, is based on certain statistical proper-
ties of the output probability distributions. Fock state
Boson Sampling and Gaussian Boson Sampling have out-
put probabilities defined by permanents and hafnians,
respectively, which are combinatorial functions mapping
matrices over a field to an element of that field. If one
treats the input matrix as a weighted adjacency matrix,
then the permanent and the hafnian count the num-
ber of perfect matchings in the bipartite and generalized
weighted graph, respectively, defined by this adjacency
matrix [14]. These functions are, in general, difficult to
compute. The permanent is #P-hard to compute ex-
actly [15], and this hardness extends to the hafnian be-
cause one can encode the permanent of a matrix as the
hafnian of a matrix that is twice as big. Even further,
Ref. [2] extended this exact hardness to a proof that it is
GapP-hard to approximate the modulus squared of the
permanent up to inverse polynomial multiplicative er-
ror (which similarly extends to the hafnian). However,
showing that it is hard to compute or approximate spe-
cific output probabilities is not, in and of itself, enough
to demonstrate hardness of actually producing a sam-
ple from the Fock or Gaussian Boson Sampling distri-
butions; many theoretical tools are needed to show that
a difficulty in computing probabilities further implies a
difficulty in sampling.

One such crucial tool is called anticoncentration. An-
ticoncentration is a property of the output distribution
that says, roughly, that the outputs are not too clus-
tered on individual probabilities, hence making it more
difficult to adequately mimic this distribution in a sam-
pling procedure, and it is commonly used as evidence for
approximate average-case hardness of sampling [3]. An-
ticoncentration is usually proven by analyzing the mo-
ments of the outcome probability distribution. In a com-
panion piece to this work, Ref. [16], we study anticoncen-
tration in the non-collisional limit (where the outcome
states are very likely to have at most a single photon in
each mode). We develop a graph-theoretic technique to
find a closed form for the first moment and a few sim-
ple analytical results about the second moment; most
saliently, we show that the second moment admits a

polynomial expansion in the number of initially squeezed
modes, and we derive the leading order in this expansion.
These simple results are sufficient to show that there is
actually a transition in whether or not anticoncentra-
tion holds based on how many of the initial modes are
squeezed; when few are squeezed, there is a lack of anti-
concentration, but, in the opposite limit, a weak version
of anticoncentration holds.

However, the second moment itself deserves a more
thorough treatment beyond the few analytic results
needed to prove this transition in anticoncentration. For
example, linear cross-entropy benchmarking (LXEB) is a
tool that has been used to characterize the performance
of sampling experiments, most notably in the random
circuit sampling experiment of Ref. [17]. It can be shown
that the LXEB score that an error-free sampler would
achieve when averaged over all possible random networks
is precisely given by the second moment of the output
probabilities normalized by the square of the first mo-
ment. Therefore, a better understanding of the second
moment is crucial to achieving a better understanding
this popular benchmarking scheme.

To that end, we develop a classically efficient recursion
relation that allows us to exactly calculate the second
moment up to any desired Fock sector n, which is the
main technical contribution of this work. The recursion
relation follows from the graph-theoretic approach we
introduce in Ref. [16], which we generalize and expand
upon here. This approach reduces the algebraic evalu-
ation of the hafnian to simply counting the number of
connected components of a certain class of graphs. We
then carefully study how higher-order graphs reduce to
lower-order ones under certain operations, and the effect
that this has on the number of connected components,
in order to recursively solve for the second moment. Not
only does this allow us to make statements about the av-
erage LXEB score for an error-free sampler, but it also
allows us to pin down more precisely where the aforemen-
tioned transition in anticoncentration occurs. If k is the
number of initially squeezed modes, we provide strong
evidence that this transition occurs at k = Θ(n2).
The rest of the paper proceeds as follows. In Sec-

tion II, we provide some background information, set
up the system and problem of interest, and briefly sum-
marize our main results. In Section III, we review our
results from Ref. [16]; specifically, in Section IIIA, we re-
view results about the first moment, and in Section III B,
we discuss how to calculate the second moment. This
latter section sets up the discussion of the recursion in
Section IV (though most of the technical details are ad-
dressed in Appendices A and B). Section VA discusses
the actual exact numerical evaluation of the recursion.
Complementing this, Section VB discusses some prelim-
inary analytical results and scaling properties of the sec-
ond moment. Finally, in Section VI, we apply these re-
sults to give evidence for the exact location of the tran-
sition in anticoncentration we derive in Ref. [16].

3

II. THE OUTPUT DISTRIBUTION OF
GAUSSIAN BOSON SAMPLING

In this section, we provide some necessary background
information on Gaussian Boson Sampling and set up our
system of interest. We also motivate the study of the
moments of the output probabilities. Finally, we provide
a brief summary of our main results.

A. Gaussian boson sampling

We consider a paradigmatic Gaussian Boson Sam-
pling system on m modes [7, 8]. These modes pass
through a random sequence of beamsplitters and phase
shifters that effect a linear optical (i.e. photon-number-
conserving Gaussian) unitary U ∈ U(m) and are then
measured in the Fock basis (this non-Gaussian opera-
tion is necessary for classical hardness of sampling [10]).
We consider the typical case where the initial state on
the first k modes consists of single-mode squeezed states
of equal squeezing parameter r, and the remaining m−k
modes are initialized to the vacuum state.

Reference [7] calculates the outcome probability of
the Fock measurement of such a system. Given a
unitary U , the probability of obtaining an outcome
n = (n1, n2, . . . , nm) ∈ Nm

0 with total photon count
2n =

∑m
i=1 ni is given by

PU (n) =
tanh2n r

coshk r

∣∣Haf(U⊤
1k,n

U1k,n)
∣∣2 . (1)

U1k,n is the k × 2n submatrix of U corresponding to its
first k rows and its columns determined by the nonzero
elements of n (appropriately repeated ni times). Haf
refers to the hafnian, which, for a 2n × 2n symmetric
matrix A, is

Haf(A) =
1

n!2n

∑
σ∈S2n

n∏
j=1

Aσ(2j−1),σ(2j), (2)

with S2n the permutation group on 2n elements. We
specify that the dimensions of A are even because the
hafnian of an odd matrix vanishes; it also vanishes if
the input matrix is not symmetric. In our setting, this
aligns with the physical fact that single-mode squeezed
vacuum states are supported only on even Fock states.
The hafnian generalizes the permanent (whose compu-
tational complexity controls the hardness of Fock state
Boson Sampling) because one can prove that [7]

Per(A) = Haf

[(
0 A
A⊤ 0

)]
. (3)

Hence, computing the hafnian is at least as hard as com-
puting the permanent.

We work in the regime where the measured output
states are, with high probability, photon-collision-free,
which means that the output vector n has ni ∈ {0, 1}.
That is, U1k,n has no repeated columns. It suffices for

E[2n] = k sinh2 r = o(
√
m) for photon-collision-freeness

to hold with high probability. When n = o(
√
m),

Ref. [11] provides strong numerical and theoretical ev-
idence that the distribution of submatrices U1k,n is well-
captured by a generalization of the circular orthogonal
ensemble (COE):

Conjecture 1 (Hiding [11]). For any k such that 1 ≤
k ≤ m and 2n = o(

√
m), the distribution of the symmet-

ric product U⊤
1k,n

U1k,n of submatrices of a Haar-random
U ∈ U(m) closely approximates in total variation dis-
tance the distribution of the symmetric product X⊤X of
a complex Gaussian matrix X ∼ N (0, 1/m)k×2n

c with
mean 0 and variance 1/m.

We note that, in Ref. [11], this conjecture is only for-
mulated for the case n ≤ k ≤ m. However, here we allow
k to reach 1. The reasoning is that the evidence for Con-
jecture 1 in the regime k = n is based on a proof from
Ref. [2] showing that n×n submatrices of Haar-random
unitaries are approximately Gaussian. Clearly the proof
must still hold in the case k < n (if n×n submatrices are
approximately Gaussian, then so too are smaller subma-
trices), meaning we can safely extend the conjecture to
all k ≤ m.

Roughly speaking, the intuition behind the conjecture
and the original proof of the k = n regime in Ref. [2]
is that, if one looks at a small enough submatrix of
a unitary, this submatrix no longer “notices” the uni-
tary constraints. Multiplying this small submatrix by
its transpose washes out the remaining correlations be-
tween elements of the unitary. Hence, the product of the
submatrices is approximately the same as a product of
i.i.d. Gaussian matrices. Observe also that working in
the non-collisional regime, n ∈ o(

√
m), is crucial for this

argument to hold; an output state with more than one
photon in a given mode leads to a repeated column/row
in the respective submatrix, which, of course, destroys
the independence of these elements. In what follows, we
work under the assumption that Conjecture 1 holds. We
are therefore interested in the statistical properties of
X⊤X when the elements of X are i.i.d. Gaussian.

B. Moments of the Gaussian Boson Sampling
distribution and their significance

In order to understand the statistical properties of the
outcome probabilities of Gaussian Boson Sampling, we
must study not just the distribution over individual ma-
trix elements of X⊤X, but how they interact with one
another through the hafnian. Under Conjecture 1 and
Eq. (1), the outcome probabilities of Gaussian Boson
Sampling are given by (up to a prefactor that is mostly
irrelevant for our purposes)

Mt(k, n) := EX∼Gk×2n [|Haf(X⊤X)|2t], (4)

where we use Gk×2n as shorthand for N (0, 1)k×2n
c (we

consider unit variance for computational simplicity;

4

rescaling X by 1/
√
m leads to another overall prefac-

tor that can be dealt with independently). Specifically,
we are most interested in the first and second moments,
t = 1 and t = 2, respectively. We motivate this in-
terest in two ways: the study of anticoncentration and
linear cross entropy benchmarking in Gaussian Boson
Sampling.

We first recall the framework for anticoncentration es-
tablished in Ref. [16]. There, the key definition is p2,
the inverse average collision probability in the output,
which, under the hiding conjecture (Conjecture 1), is
approximately given by the ratio of the square of the
first moment to the second moment:

p2(U(m)) =
EU∈U(m)[PU (n)]

2

EU∈U(m)[PU (n)2]
≈ M1(k, n)

2

M2(k, n)
=: m2(k, n).

(5)

We refer to m2(k, n) as the inverse normalized second
moment. Reference [16] uses p2 to define three different
classes of anticoncentration:

(A) We say that PU , U ∈ U(m), anticoncentrates if
p2 = Ω(1);

(WA) We say that PU anticoncentrates weakly if p2 =
Ω(1/na) for some a = O(1);

(NA) We say that PU does not anticoncentrate if p2 =
O(1/na) for any constant a > 0.

Reference [16] (especially Section S5 in the Supplemen-
tary Material) contextualizes these definitions in relation
to the approximate average-case hardness necessary for
formal hardness of Gaussian Boson Sampling.

We note also that, of course, it is important how pre-
cise this approximation in Eq. (5) really is. That is,
exactly how close in total variation distance the exact
and approximate distributions are is important to for-
malizing the complexity theoretic implications of our
work. In particular, if the distribution U⊤

1k,n
U1k,n is not

close enough in total variation distance to the distribu-
tion X⊤X, then it is not possible to transfer statements
about, say, anticoncentration between the two distribu-
tions. We address this subtlety in the Supplemental Ma-
terial of the companion work Ref. [16], but, in short, we
can formalize and sharpen Conjecture 1 such that state-
ments made about anticoncentration of the approximate
distribution via m2 imply anticoncentration of the exact
distribution via p2 as well.
Beyond understanding anticoncentration, calculations

of M1(k, n) and M2(k, n) also allow one to study lin-
ear cross-entropy benchmarking in Gaussian Boson Sam-
pling. Recall that linear cross-entropy benchmarking
is a method by which one can compare the outputs
of a potentially noisy Gaussian Boson Sampling experi-
ment with the output of a perfect, error-free experiment.
Cross-entropy benchmarking was introduced in the con-
text of random circuit sampling in Refs. [18, 19] and
later linearized in Ref. [17]. We review this linearized
form now, translating from the random circuit sampling
language to that of bosonic sampling.

Let {n} be the possible output photon strings sam-
pled in some Gaussian Boson Sampling experiment that
are produced with respective experimental probabilities
P̃U (n). Let PU (n) be the ideal probabilities for these
outputs; that is, these are the probabilities for an out-
put n given by Eq. (1). The linear cross-entropy score
FXEB for such an experiment is

FXEB = |Ω2n|
∑

n∈Ω2n

PU (n)P̃U (n)− 1, (6)

where Ω2n is the non-collisional sample space with 2n
output photons in m modes. If the noisy outputs are
correct, i.e. the experiment is error-free, then P̃ (ni) =
P (n). The ideal cross-entropy score, then, is

F ideal
XEB = |Ω2n|

∑
n∈Ω2n

PU (n)
2 − 1. (7)

The expected value of the ideal cross-entropy over all
possible unitaries is, therefore,

EU∈U(m)[F
ideal
XEB] = |Ω2n|

∑
n∈Ω2n

EU∈U(m)[PU (n)
2]− 1.

(8)
Assuming that one operates in the hiding regime, then
two facts are true: first, |Ω2n| ∼ M1(k, n); second,
EU∈U(m)[PU (n)

2] is independent of n (see Ref. [16] for
more details). Therefore,

EU∈U(m)[F
ideal
XEB] =

M2(k, n)

M2
1 (k, n)

− 1 = m2(k, n)
−1 − 1. (9)

Thus, anticoncentration and the expected ideal linear
cross-entropy benchmarking score both depend on this
inverse average collision probability. Therefore, a precise
calculation of the second moment beyond asymptotics is
valuable to a more fine-grained understanding of both
anticoncentration and cross-entropy benchmarking.

C. Summary of Results

We now come to a brief summary of our main results.
In Ref. [16], we develop a graph-theoretic formalism

that allows us to derive various analytic properties of the
first and second moments, M1(k, n) and M2(k, n). We
use this formalism to find a closed form expression for
M1(k, n) and to show that M2(k, n) admits a polynomial
expansion in k; we also calculate the leading order of
this expansion. This allows us to show the transition
in anticoncentration. We review these results in more
depth in Section III.

In this work, we significantly expand upon this graph-
theoretic formalism and derive an efficiently evaluable
recursion relation that allows us to numerically exactly
calculate all coefficients of the polynomial expansion of
the second moment. We then apply this algorithm and
calculate these expansions up to photon sector 2n = 80.
In the photon-non-collisional regime, where n ∈ o(

√
m),

5

this corresponds to approximately 6400 modes, which
is well beyond the current state-of-the-art experiments.
Therefore, the technique that we develop in this work
yields results that can help characterize the output dis-
tribution of any near-term Gaussian Boson Sampling ex-
periment. The recursion is developed in Section IV, with
details about its efficiency and construction deferred to
Appendices A and B, respectively.

We then discuss some simple analytic results about
the scaling of the second moment in Section VA. We
follow this with substantial numerical investigation of
the results of the recursion up to 2n = 80 in Section VI.
In particular, we are able to give strong evidence that
the transition in anticoncentration occurs at k = Θ(n2).
We accomplish this with numerical plots of m2(k, n), the
quantity that controls anticoncentration, when k scales
polynomially with n. We also provide a brief analytic
argument that this transition occurs somewhere between
k = Ω(n) and k = O(n2).

This result, along with the fact that we operate in
the conjectured hiding regime where 2n = o(

√
m) and

k ≤ m, implies concrete advice for experimental demon-
strations of quantum advantage via Gaussian Boson
Sampling. Namely, one should squeeze all m modes with
squeezing parameter sinh2 r = o(m−1/2).

III. GRAPH-THEORETICAL ANALYSIS OF
GAUSSIAN BOSON SAMPLING MOMENTS

In this section, we lay out the graph-theoretic frame-
work for analyzing the moments of Gaussian Boson Sam-
pling output probabilities. This is a review of the same
framework we develop in Ref. [16]. We first briefly re-
call the derivation of the closed form of the first moment
M1(k, n), and we follow this with a discussion of how an
extension of this framework also allows us to analyze the
second moment M2(k, n).

A. First Moment

In this section, we discuss the first moment of the out-
put probabilities, which is, up to some multiplicative fac-

tors, E
X∼Gk×2n

[∣∣Haf(X⊤X)
∣∣2]. We calculate and analyze

this moment in Ref. [16], but we review the key elements
of that discussion because they are a useful point of ref-
erence for the calculation of the second moment.

Using the definition of the hafnian and properties of
the expectation value of complex Gaussians, we reduce
the first moment to a sum over Kronecker δs:

M1(k, n) =
(2n)!

(2nn!)2

∑
τ∈S2n

k∑
{oi}n

i=1

n∏
j=1

δo⌈ τ(2j−1)
2 ⌉o⌈ τ(2j)

2 ⌉
.

(10)
We ascribe a graph-theoretic interpretation to this equa-
tion; see Fig. 1 for an example. Each permutation
τ instantiates a graph Gτ on 2n vertices labeled O1

to O2n with edges defined by two perfect matchings:
one fixed black set of edges, and one set of red edges
determined by τ . More specifically, each index oj in
the sum splits into two vertices Oℓ and Oℓ′ such that
⌈τ(ℓ)/2⌉ = j = ⌈τ(ℓ′)/2⌉ (that is, o⌈τ(ℓ)/2⌉ maps to a
vertex Oℓ). One perfect matching consists of black edges
between O2j−1 and O2j for all j ∈ [n] := {1, 2, . . . , n};
these edges enforce that o⌈τ(2j−1)/2⌉ and o⌈τ(2j)/2⌉ are
linked by a Kronecker δ. The other perfect matching has
red edges between Oℓ and Oℓ′ if ⌈τ(ℓ)/2⌉ = ⌈τ(ℓ′)/2⌉;
these edges ensure that there is an edge between the
ℓ, ℓ′ mapped to the same value under τ and the ceil-
ing function, meaning the vertices arose from the same
lower-case-o index.

O1 O2 O3 O4 O5 O6 O7 O8

FIG. 1. Graph G ∈ G1
n. One of 2nn! permutations that

induces this graph is τ =
(
1 2 3 4 5 6 7 8
1 3 5 2 4 6 8 7

)
. This graph has two

connected components, therefore contributing k2 to the first
moment.

This definition of Gτ ensures that the number of con-
nected components of Gτ , C(Gτ), is equivalent to the
number of unconstrained indices in the interior sum in
Eq. (10), and, hence, the number of factors of k that τ
contributes overall. Therefore,

M1(k, n) =
(2n)!

(2nn!)
2

∑
τ∈S2n

kC(Gτ). (11)

We simplify this expression using a degeneracy whereby
2nn! different τ all induce the same final graph; the fac-
tor of n! corresponds to choosing which tuple (2j−1, 2j)
corresponds to which index ⌈τ(ℓ)/2⌉ = ⌈τ(ℓ′)/2⌉, and
the factor of 2n comes from ordering within each tu-
ple. Therefore, we study only these final sets of graphs,
which we label G1

n (1 refers to the first moment, and n
indexes the order). We study the connected components
of graphs in G1

n by writing down a recursion relation in
n and k that, when solved, yields the first theorem of
Ref. [16]:

Theorem 1 (Ref. [16]). The sum over graphs in G1
n

satisfies ∑
G∈G1

n

kC(G) = k(k + 2) . . . (k + 2n− 2), (12)

and hence M1(k, n) = (2n− 1)!!(k + 2n− 2)!!/(k − 2)!!.

To summarize: Eq. (10) gives an expression for the
first moment of the outcomes of Gaussian Boson Sam-
pling probabilities in terms of sums of products of Kro-
necker δs. We then reinterpret this as counting the num-
ber of connected components of a certain type of graph
with two perfect matchings. We solve this counting prob-
lem by developing and evaluating a recursion relation.
We use the same overall technique to calculate the sec-
ond moment, as we explain in the next section.

6

B. Second moment

We now move on to analyzing the second moment of
the output probabilities. Using similar techniques as de-
scribed for the first moment, in Ref. [16] we derive an
expression for the second moment that is equivalent to
Eq. (10):

M2(k, n) := E
X∼Gk×2n

[∣∣Haf(X⊤X)
∣∣4] = (1

2nn!

)4

(2n)!
∑

τ,α,β∈S2n

k∑
{ℓi,oi,pi}n

i=1=1

[
n∏

j=1(
δo⌈ τ(2j−1)

2 ⌉o⌈ τ(2j)
2 ⌉

δp⌈α(2j−1)
2 ⌉q⌈ β(2j−1)

2 ⌉
δp⌈α(2j)

2 ⌉q⌈ β(2j)
2 ⌉

+ δo⌈ τ(2j−1)
2 ⌉q⌈ β(2j)

2 ⌉
δp⌈α(2j−1)

2 ⌉q⌈ β(2j−1)
2 ⌉

δp⌈α(2j)
2 ⌉o⌈ τ(2j)

2 ⌉
+

δq⌈ β(2j−1)
2 ⌉o⌈ τ(2j)

2 ⌉
δp⌈α(2j−1)

2 ⌉o⌈ τ(2j−1)
2 ⌉

δp⌈α(2j)
2 ⌉q⌈ β(2j)

2 ⌉
+ δq⌈ β(2j−1)

2 ⌉q⌈ β(2j)
2 ⌉

δp⌈α(2j−1)
2 ⌉o⌈ τ(2j−1)

2 ⌉
δp⌈α(2j)

2 ⌉o⌈ τ(2j)
2 ⌉

)]
.

(13)

.

O1 O2 O3 O4 O5 O6 O7 O8

Q1 Q2 Q3 Q4 Q5 Q6 Q7 Q8

P1 P2 P3 P4 P5 P6 P7 P8

o

p

q

Type 1 Type 2 Type 3 Type 4

FIG. 2. Example graph on n = 4 used in the calcula-
tion of the second moment. Each of the four possible sets
of black edges are shown. An example of three permuta-
tions that would induce this graph is: τ =

(
1 2 3 4 5 6 7 8
1 2 4 5 3 6 8 7

)
,

α =
(
1 2 3 4 5 6 7 8
8 6 7 3 4 5 1 2

)
, and β =

(
1 2 3 4 5 6 7 8
8 5 6 2 1 7 3 4

)
. This graph has

5 connected components, so it contributes k5 to the second
moment.

The main differences between Eq. (13) and Eq. (10) are
threefold:

1. We sum over three permutations (instead of a sin-
gle one) labeled τ, α, β;

2. There are now 3n indices to sum over,
{oi, qi, pi}ni=1, instead of just the n given by
{oi}ni=1;

3. Each factor is a sum of four possible terms instead
of just one.

However, this expression still possesses a natural graph-
theoretic interpretation, as we now review. See Fig. 2 for

an example graph as a guide to the following discussion.

Each index in {oi, qi, pi}ni=1 is again split into two
graph vertices {Oi, Qi, Pi}2ni=1 that are placed into 2n
columns and three rows labeled o, p, and q, respectively.
As for the first moment, we define two perfect match-
ings on these vertices given by black and red edges. The
black edges are between vertices whose labels are linked
under the Kronecker δs, and the red edges connect graph
vertices that came from the same original summation in-
dex.

More specifically, consider fixing a set of three permu-
tations τ, α, β. There is a red edge between Oℓ and Oℓ′ if
⌈τ(ℓ)/2⌉ = ⌈τ(ℓ′)/2⌉. An analogous statement holds for
P and Q vertices, though one uses permutations α and
β, respectively, instead of τ . Note that this implies that
red edges are always contained within a single row. Now,
the black edges are slightly more complicated. There is
only a single Kronecker δ term in each factor in the prod-
uct Eq. (10), meaning there is only a single set of black
edges for the graphs in G1

n. However, because the second
moment as expressed in Eq. (13) contains factors with
four Kronecker δ terms, each value of j ∈ [n] can lead to
one of four different patterns of black edges on columns
2j − 1 and 2j. We refer to these patterns of black edges
on a single pair of adjacent columns as type-1, type-2,
type-3, and type-4; see Fig. 2 for an example graph that
has one of each type. The Kronecker δ terms and their
corresponding black edges, listed in order from type-1 to
type-4, are given by

7

δo⌈ τ(2j−1)
2 ⌉o⌈ τ(2j)

2 ⌉
δp⌈α(2j−1)

2 ⌉q⌈ β(2j−1)
2 ⌉

δp⌈α(2j)
2 ⌉q⌈ β(2j)

2 ⌉
→ {(O2j−1, O2j), (P2j−1, Q2j−1), (P2j , Q2j)}, (14)

δo⌈ τ(2j−1)
2 ⌉q⌈ β(2j)

2 ⌉
δp⌈α(2j−1)

2 ⌉q⌈ β(2j−1)
2 ⌉

δp⌈α(2j)
2 ⌉o⌈ τ(2j)

2 ⌉
→ {(O2j−1, Q2j), (P2j−1, Q2j−1), (O2j , P2j)}, (15)

δq⌈ β(2j−1)
2 ⌉o⌈ τ(2j)

2 ⌉
δp⌈α(2j−1)

2 ⌉o⌈ τ(2j−1)
2 ⌉

δp⌈α(2j)
2 ⌉q⌈ β(2j)

2 ⌉
→ {(O2j , Q2j−1), (P2j−1, O2j−1), (P2j , Q2j)}, (16)

δq⌈ β(2j−1)
2 ⌉q⌈ β(2j)

2 ⌉
δp⌈α(2j−1)

2 ⌉o⌈ τ(2j−1)
2 ⌉

δp⌈α(2j)
2 ⌉o⌈ τ(2j)

2 ⌉
→ {(O2j−1, P2j−1), (O2j , P2j), (Q2j−1, Q2j)}. (17)

Because there are four patterns of black edges per pair
of adjacent columns, and n such pairs, there are 4n pos-
sible arrangements of black edges on the entire graph.
We label these arrangements by an integer z ∈ [4n], and
we label a graph as Gτ,α,β(z).
Analogously to the first moment, we can rewrite the

sum over products of Kronecker δs in Eq. (13) as a sum
over these graphs, where Gτ,α,β(z) contributes a factor of
k raised to its number of connected components. There-
fore, Eq. (13) becomes

M2(k, n) =
(2n)!

(2nn!)
4

∑
τ,α,β∈S2n

z∈[4n]

kC(Gτ,α,β(z)). (18)

There is again a degeneracy where many permutations
all lead to the same set of red edges in a given row, and,
hence, the same graph. Specifically, this degeneracy is
again 2nn!, but for each copy of S2n. We can there-
fore again ignore the permutations and look only at the
underlying graphs. For any given z, we define G2

n(z) to
be the graphs on 6n vertices with two perfect matchings:
the zth set of black edges and red edges that pair vertices
in the same row. We then define G2

n = ∪z∈[4n]G2
n(z).

Thus, accounting for the described degeneracy and these
definitions, we get

M2(k, n) = (2n− 1)!!
∑

G∈G2
n

kC(G). (19)

This implies the following theorem.

Theorem 2 (Ref. [16]). The second moment M2(k, n)
is a degree-2n polynomial in k and can be written as
M2(k, n) = (2n − 1)!!

∑2n
i=1 cik

i, where ci is the number
of graphs G ∈ G2

n that have i connected components.

Our goal, then, is to determine these coefficients ci.
It is possible to directly compute c2n and c2n−1, that
is, the number of graphs G ∈ G2

n with 2n or 2n − 1
connected components, respectively (see Appendix C).
However, these calculations do not easily generalize to
the other ci. Therefore, we take a different approach,
which is to derive a recursion relation that is similar in
spirit to the one we use to compute the first moment.

IV. RECURSION FOR THE SECOND
MOMENT

We now move on to the recursion relation that builds
the ci for larger n from those of smaller n. It is useful
to refer to Fig. 3 for the following discussion. We are
interested in the connected components of the graphs in
G2

n, and the number of connected components does not
change if one takes a graph and then “collapses” vertices
that are connected via an edge into a single larger vertex.
The graphs that we have defined for the second moment
are composed of 2n columns of 3 vertices each. There-
fore, if one performs this collapsing operation on all of
the vertices in, say, the first two columns, this converts
a graph with 2n columns into one with 2n− 2 columns.
Let us refer to these first two columns as C1,2; that is,
C1,2 = {O1, O2, P1, P2, Q1, Q2}. Two facts follow from
the approach we have just described: (1) there are only
a finite number of ways that the two columns can con-
nect into the rest of the graph, (2) if one “integrates out”
C1,2 by collapsing all of the vertices, one can write the
number of connected components of the original graph
as the sum of the remaining connected components plus
the number of connected components contained entirely
within C1,2. This is a generalization of the approach
used to prove Theorem 1.

However, this recursion is substantially more compli-
cated than the one we use to calculate the first moment,
as illustrated in Fig. 3. In particular, we must generalize
the types of graphs that we consider in order to build a
recursion that “closes” on itself, that is, to build a recur-
sion that consistently produces valid graphs. Consider
the graphs that we have described so far in the context of
this “integration” procedure whereby sets of vertices are
collapsed onto one another. As stated, this procedure
can induce a graph with red edges that cross between
rows, which is not allowed in our current formulation.
In Fig. 3, the first figure shows a graph in G2

4 where C1,2

is integrated out, as denoted by the hashing, and the
second figure depicts the consequence of this integration.
Consider the path P3—P1—Q1—Q6 that passes through
the first column. Collapsing the vertices P1 and Q1 into
P3 and Q3, respectively, does not change the number of
connected components, but it induces an edge P3—Q6

that is heretofore unallowed because it crosses between
rows 2 and 3. Therefore, the newly induced graph is not
an element of G2

3, hence why we must generalize what

8

k ×

O1 O2 O3 O4 O5 O6 O7 O8

Q1 Q2 Q3 Q4 Q5 Q6 Q7 Q8

P1 P2 P3 P4 P5 P6 P7 P8

O3 O4 O5 O6 O7 O8

Q3 Q4 Q5 Q6 Q7 Q8

P3 P4 P5 P6 P7 P8

FIG. 3. Example showing why the simple graphs with red
edges that do not cross between rows are not sufficient to
develop a recursion. Trying to “integrate out” or collapse
the edges that connect the six vertices in the leftmost two
columns (represented here with a crosshatch pattern over
those vertices) induces a multiplicative factor of k due to the
connected component O1—O2 as well as red edges P3—Q6

and P6—Q3. Such red edges are not allowed for graphs in
G2

n, so we must expand the set of graphs we consider in the
recursion.

kinds of graphs we consider.
To that end, we define a simple generalization of our

graphs, where we allow all possible perfect matchings of
red edges across the 6n vertices. That is, we no longer
restrict red edges to connect only vertices of the same
letter (i.e., in the same row); we now allow the red edges
to cross between two different rows. However, we still
demand that each vertex still possess exactly one red
edge.

Let a12, a13, a23 be the number of edges that span
between the first and second, first and third, and sec-
ond and third rows, respectively. We can then de-
fine a set of graphs G2

n(a12, a13, a23, z) on 6n vertices,
where the z again indexes the 4n possible sets of
black edges. We can again write G2

n(a12, a13, a23) =
∪z∈[4n]G2

n(a12, a13, a23, z). Finally, then, we have

g(n, a12, a13, a23) :=
∑

λ∈G2
n(a12,a13,a23)

kC(λ) (20)

The second moment we desire is then, of course, propor-
tional to g(n, 0, 0, 0).
A few constraints on a12, a13, a23 are apparent imme-

diately:

• a12 + a13, a12 + a23, and a13 + a23 (that is, the
number of edges coming out of the first, second,
and third row, respectively) must be even;

• a12+a13, a12+a23, a13+a23 must all be less than or
equal to 2n (there cannot be more than 2n edges
coming out of a row with only 2n vertices given
that there is exactly one red edge incident on every
vertex).

We also observe that, while we do not explicitly keep
track of these edges, we can also define a11, a22, a33 as
the number of “proper” edges that map between vertices
in the first, second, and third rows, respectively. These
edges have a simple relationship to the ones we do keep
track of that can be derived by simply counting how
many vertices in a given row are left after subtracting
those that are used in edges that cross between rows:

a11 =
2n− a12 − a13

2
, (21)

a22 =
2n− a12 − a23

2
, (22)

a33 =
2n− a13 − a23

2
. (23)

Because we have the constraints that a12 + a13, a12 +
a23, a13 + a23 must all be even, a11, a22, a33 are all inte-
gral. Also, the fact that a12+a13, a12+a23, a13+a23 must
all be less than or equal to 2n ensures that a11, a22, a33
are all non-negative as well.

It is also useful to write down the total number of
graphs of each type. There are 6n total vertices, and 2n
in each row. Given a vector a = (a12, a13, a23), we need
to choose a12 vertices in row 1 and row 2 to link to one
another, a13 in rows 1 and 3 (with no overlap between
the vertices chosen in the first row corresponding to a12
vs. a13), and a23 in rows 2 and 3 (again, no overlap
with previously chosen vertices is allowed). Once these
vertices are chosen, it also remains to choose how to
connect them. Finally, one must pair off the remaining
vertices in each row, then multiply by 4n to account for
the black edges. The result is

|G2
n(a12, a13, a23)| =

(
2n

a12

)(
2n− a12

a13

)(
2n

a12

)(
2n− a12

a23

)(
2n

a13

)(
2n− a13

a23

)
a12!a13!a23!

× (2n− a12 − a13 − 1)!!(2n− a12 − a23 − 1)!!(2n− a13 − a23 − 1)!!4n. (24)

This result is useful because, if one sets k = 1 in Eq. (20), then every graph is put on equal footing; that is, any

9

number of connected components contributes equally to
the sum. Therefore, given a polynomial expansion in
k for any g(n, a12, a13, a23) (note that Theorem 2 still
holds for the generalized graphs, except the highest order
term need not be 2n anymore—generically it can reach
3n), Eq. (24) gives the sum of the coefficients on the
monomials.

We now describe the recursion using the following
equation

g(n, a12, a13, a23) =∑
b12,b13,b23

c(a12, a13, a23, b12, b13, b23)g(n−1, b12, b13, b23).

(25)

The goal is to determine the coefficients c for all valid
sets a12, a13, a23 allowed by n. In order to do this, one
must effectively determine the various ways integrating
out two columns changes the possible red edge configu-
rations.

Specifically, there are 17 ways (24 if one disambiguates
symmetric cases) in which C1,2 can attach into a graph
of order n − 1 (that is, one with 2n − 2 columns). We
classify these by the number of red edges that “protrude”
from C1,2. We illustrate these cases in Fig. 4 and now
describe how to interpret these images.

Red edges that attach within a row inside the block are
fixed, as there is only one possible edge that can connect
two vertices in the same row. We depict the red edges
that connect C1,2 to the rest of the graph as protruding
from the same row on the right side of the block, as
shown in Fig. 4. We depict red edges that go between
different rows in C1,2 on the left of the box, again shown
in Fig. 4. We do not draw the four possible sets of black
edges within the block, but understanding their effect is
crucial to the actual mechanics of the recursion.

We must determine how each of these cases leads
to a relationship between a and b, as well as the co-
efficient c in Eq. (25), which is related to the num-
ber of possible graphs of order n that, when integrated
out, lead to the same graph at order n − 1. The co-
efficient out front is also affected by how many inter-
nal loops the given case has, as that of course leads
to extra connected components that yield factors of
k. There are overall three different contributions to
c(a,b) := c(a12, a13, a23, b12, b13, b23):

• Loop: This corresponds to the number of con-
nected components in C1,2. This is the easiest con-
tribution to determine;

• Vectorial: This corresponds to the relationship be-
tween a and b in Eq. (25), and, while somewhat
simple in spirit, it often requires significant case-
work. In short, when integrating out C1,2, one
loses contributions from internal edges that are lost
by collapsing the vertices, but one gains edges of
the types that are induced between the remaining
vertices;

• Combinatorial: This corresponds to the combina-
torial factors that are associated with how many
ways a given case leads to the same graph at lower
order. This depends both on the number of pro-
truding edges and how the red and black edges
interact via the vertices in C1,2.

With these ideas set forth, the evaluation of the re-
cursion proceeds as follows. We first evaluate the base
cases when n = 1. We then determine the loop, vectorial,
and combinatorial contributions to each of the 17 cases
depicted in Fig. 4, thus determining how that case con-
tributes to the overall recursion. Finally, we evaluate the
recursion numerically exactly, which is classically effi-
cient (see Section VA and Appendix A for details). Note
that, while it is, in principle, possible to write down ana-
lytically the contribution of each of the 17 cases depicted
in Fig. 4, the terms are sufficiently numerous and com-
plicated that we could not actually solve the recursion
analytically; for more details, see Appendix B, where
the loop, vectorial, and combinatorial contributions are
worked out for the cases.

V. ANALYSIS OF THE SECOND MOMENT

In this section, we analyze the results derived from the
numerically exact evaluation of the recursion described
in the previous section. Specifically, we first discuss the
code behind the recursion and provide some checks to
gain confidence that code is accurate. We then derive
some analytic results upper and lower bounding the sec-
ond moment, which we then compare to the numerically
exact data to understand how well they capture the scal-
ing of the second moment.

A. Numerical Evaluation of the Recursion

Once the theoretical principles behind the recursion
in Eq. (25) are developed, we simply account for the
contributions from each case and evaluate the recursion
numerically exactly. We accomplish this using the Ju-
lia programming language [20] and find g(n, 0, 0, 0) from
n = 1 to n = 40 (which, recall, means up to photon
sector 80).

We now briefly describe our implementation of the ex-
act numerical recursion; the code is available on GitHub
[21]. As a consequence of Eq. (24), the polynomial coef-
ficients in g(n, a12, a13, a23) grow at most factorially, so
the number of bits needed to store the integers grows
polynomially. Therefore, to ensure exact accuracy of all
of the integer calculations, we use Julia’s BigInt type,
which allows us to achieve arbitrary-precision arithmetic
[20]. Next, in order to avoid performing slow sym-
bolic arithmetic operations, we represent polynomials
in k as BigInt arrays, where the ith element of the
array corresponds to the coefficient in front of the ki

term in the polynomial. Multiplication and addition of
polynomials in k is then done at the array level. We

10

(5)

(6)

(7)

(8)

(9)

(10)

(11)

(12)

(13)

(14)

(15)

(16)

(17)

(6s)

(5s)(1)

(2)

(3)

(4)

(2s) (10s)

(9s) (13s)

(15s)

FIG. 4. List of 17 cases (up to symmetry) for how the first two columns in a graph of order n can connect into the rest of the
graph.

begin with n = 1 and store the base case values of
g(1, a12, a13, a23) given in Appendix B 1. To compute
the value of g(n, a12, a13, a23), we iterate through the 17
cases described in Appendix B and compute the various
combinatorial factors and values of b12, b13, b23 that show
up in the sum in Eq. (25). We then recursively compute
the values of g(n−1, b12, b13, b23). The algorithm utilizes
memoization every time any value of g(n, a12, a13, a23) is
computed so that the recursion rarely needs to go par-
ticularly deep. In the end, in order to compute up to
g(40, 0, 0, 0), we compute g(n, a12, a13, a23) for around
50 000 combinations of arguments, resulting in almost
200 megabytes of (uncompressed) data.

As mentioned, the evaluation of the recursion is clas-
sically efficient. In short, the number of allowed a
(i.e. those that satisfy the necessary bounds and par-
ity constraints) is polynomially bounded, the size of the
coefficients cannot be more than factorially large (mean-
ing they can be stored with polynomial space), and
the array-based multiplication and addition is classically
tractable. More details are presented in Appendix A.

We can check the computed values of g(n, a12, a13, a23)
derived via the recursion in a few ways. First, we note
again that for any value of g(n, a12, a13, a23), setting
k = 1 (i.e., summing the coefficients in front of each
monomial) yields the total number of graphs of this type,
which is given in Eq. (24). Furthermore, Lemma 1(ii) (to
be introduced below) gives the coefficient in front of the
leading order term in g(n, 0, 0, 0). Our numerically ex-

act computation of these numbers using the recursion
matches these predicted values.

Second, for various n and k, we numerically sample 105

random X ∈ Gk×2n, compute
∣∣Haf[X⊤X]

∣∣4 using the
code provided by Ref. [22], and average the results. This
gives a numerical approximation to (2n−1)!!g(n, 0, 0, 0).
We perform this calculation for n, k ∈ {1, 2, . . . , 9}. The
result is shown in Fig. 5, and we see good agreement
between the approximate numerical calculations (data
points and error bars) and the theoretical values pre-
dicted by the recursion (solid lines).

B. Scaling of the Second Moment

While we have not found a closed form for the solu-
tion to the recursion, we are able to derive a few simple
analytic results about the values of the coefficients of the
polynomial expansion as well as the overall scaling of the
second moment. The former are covered in Ref. [16], as
they are crucial to demonstrating the transition in an-
ticoncentration that is the central result of that work.
The latter are new to this work.

We recall Lemma 1 from Ref. [16].

Lemma 1 (Ref. [16]). We have that

i. M2(1, n) = ((2n− 1)!!)44n;

ii. c2n = (2n)!!.

11

1 2 3 4 5 6 7 8 9
10−3

108

1019

1030

1041

n = 1

n = 9

k

E X
∣ ∣ Haf

(X
T
X
)∣ ∣4

Analytic

Numeric

FIG. 5. Numerical test of recursion. The x-axis represents

k, and the y axis represents E
X∼Gk×2n

[
∣∣Haf(X⊤X)

∣∣4]. Solid

lines, from n = 1 through n = 9 are the theoretical pre-
dictions derived from the recursion relation (see [21] for the
code). Dots and bars represent the expected value and stan-
dard error, respectively, estimated by sampling 105 random
Gaussian matrices and computing the second moment using
the code provided by Ref. [22]. Note that, for many points,
the size of the error bar is smaller than its associated dot.
Further, there is an asymmetry in the error bars due to the
log nature of the plot. We see excellent alignment between
theory and numerics for n = 1 through n = 5. For larger n,
the agreement is still good, but we seem to undersample the
true value in many cases. We suspect that this is because the
distribution of the second moment has a long tail, meaning we
do not suspect that the given error bars are indicative of the
true difference between the sampled and numerically exact
data. We believe that were we able to either take sufficiently
more samples we would see stronger agreement between the
sampled and true means, but this option is too computation-
ally demanding given the size of the matrices involved and
the exponential complexity of classically computing the haf-
nian [23].

The proof of part (i) consists of a direct calculation
using Eq. (13); it also follows from the graph-theoretic
framework by simply counting the number of possible
graphs of type a = (0, 0, 0) (see Eq. (24)). The proof
of part (ii) follows from a reduction of the problem of
counting connected components to a special case of the
first moment using k = 2. We also reprove this result in
a slightly different way in Appendix C.

As a corollary of Lemma 1, we can derive upper and
lower bounds on the second moment:

Lemma 2. Lemma 1 implies

M2(k, n) ≤ (2n− 1)!!44nk2n, (26)

M2(k, n) ≥ (2n)!k2n, (27)

M2(k, n) ≥ (2n− 1)!!44n. (28)

Proof. We first prove the upper bound. The leading term
in g(n, 0, 0, 0) is of the form k2n, and the total number

of graphs with no red edges crossing between rows is
(2n−1)!!34n. Thus, the upper bound comes from saying
that all graphs have 2n connected components.
We next prove the lower bounds. The first lower

bound comes from considering only the leading order
term in the polynomial expansion, which is given in
Lemma 1(ii). Because each term in the expansion is
non-negative, this is a valid lower bound. The second
lower bound comes from observing that g(n, 0, 0, 0) is
monotonically increasing with k, as there are no nega-
tive coefficients in the polynomial expansion. Therefore,
we can also take a lower bound which is simply the value
at k = 1, which we know counts the total number of pos-
sible graphs and follows from Lemma 1(i).

Stirling’s approximation tells us when each lower
bound is most useful:

(2n)!k2n ∼ (nk)2n
(

4

e2

)n

, (29)

(2n− 1)!!44n ∼ n4n

(
64

e4

)n

. (30)

For k ∈ o(n), Eq. (30) is larger, and when k ∈ ω(n),
Eq. (29) is instead larger. When k ∈ Θ(n), then both
lower bounds have a leading dependence of n4n, so which
is better depends on the constant of proportionality.

Armed with our analytical results and the exact nu-
merical data from the recursion, we can now investigate
how the second moment scales with k and n. In Fig. 6(a),
we plot the logarithm of the upper and lower bounds,
as well as the numerically exactly computed values for
(2n − 1)!!g(n, 0, 0, 0), for our largest available n, which
is n = 40. We set k = na with a ∈ [0, 4]. We see that,
except for when k = n0 and the upper bound is exactly
correct (as is the lower bound based on the number of
graphs), the lower bound is a much better approxima-
tion. In fact, as expected, the lower bound based on the
leading order appears to become a very good approxi-
mation as k gets larger.

We should also point out that the logarithmic scaling
of the y-axis of Fig. 6(a) means that small differences
between the exact values and the corresponding lower
bound actually represent large multiplicative differences
between the true values. For this reason, in Fig. 6(b),
we also plot the difference between the logarithms of the
exact data and the composite lower bound defined by
max{Eq. (27), Eq. (28)}. This helps show how the exact
data trends toward Eq. (27) as k grows.

Relatedly, we can actually show analytically that
Eq. (27) cannot fully capture the scaling of the second
moment when k = O(n2). In Appendix C, we discuss
how to compute individual coefficients in the polynomial
expansion of the second moment. There, we give a new
proof that c2n = (2n)!!, and we also prove for the first
time that c2n−1 = (2n)!!(3n − 2)n. Together, these two
results mean

c2nk
2n

c2n−1k2n−1
=

k

(3n− 2)n
∼ k

n2
. (31)

12

(a) (b)

0 1 2 3 4

500

1000

1500

0 1 2 3 4
0

10

20

30

40

50

60

FIG. 6. Plots showing scaling of the second moment compared to upper and lower bounds. For both plots, physically, k should
be an integer, but we here simply use the polynomial expansion of the second moment as a function of arbitrary real k. (a)
Scaling of logarithm of the second moment and its upper and lower bounds for n = 40 and k = na with a ∈ [0, 4]. The green
horizontal dashed line and the yellow slanted dashed line represent the lower bounds based on the number of graphs [Eq. (28)]
and the leading order term [Eq. (27)], respectively. The maroon solid line represents the upper bound Eq. (26). The bound
region is, therefore, highlighted in gray. Numerically exact data is given for n = 40 by the black dots [21]. Notice that the
black dots representing the exact data stay within the gray region and, for most values of a, closely track the lower bound.
(b) Difference between the logarithms of the exact data and the combined lower bound. The peak of the curve shows where
the lower switches from the number of graphs to the leading order term. We see that, around a = 2, the lower bound based
on the leading order becomes a good approximation.

Therefore, in order for the leading term c2nk
2n to asymp-

totically dominate c2n−1k
2n−1, we require k = ω(n2). A

fortiori, for the leading term to dominate all other terms,
and, therefore, for the leading-order lower bound to be a
good approximation for the second moment, k must be
ω(n2).

In summary, then, the lower bounds in Eqs. (27)
and (28) typically track the true value of the second mo-
ment much better than the upper bound in Eq. (26).
When k = ω(n2), the first lower bound, Eq. (27), which
is based on the leading order term, appears to be a very
good approximation to second moment.

VI. LOCATING THE TRANSITION IN
ANTICONCENTRATION

We now move on to some of the concrete consequences
of our work. The main result of Ref. [16] is identifying a
transition in anticoncentration in Gaussian Boson Sam-
pling as a function of k, the number of initially squeezed
modes. This result follows entirely from analytic results.
Specifically, in Ref. [16], we show through direct compu-
tation that, when k = 1, the probabilities do not anticon-
centrate, and we use the leading order term to show that
these probabilities weakly anticoncentrate in the limit
that k → ∞. Hence, we show the existence of a tran-
sition, but we do not isolate its exact location. We do
conjecture that it occurs at a = 2, where k scales with n
as k = Θ(na), based on an allusion to Scattershot Boson
Sampling [24], which is another generalization of Fock
state Boson Sampling; there the initial state is composed
of two-mode squeezed states where one half of each state
is measured and postselected on measurements with at

most one photon. In short, one can roughly draw a con-
nection between the presence of hiding in Scattershot
Boson Sampling and the number of initially squeezed
modes (this is detailed more thoroughly in Section S6 of
the Supplementary Material in Ref. [16]).

The main contribution of this work is to show con-
vincingly that the location of the transition is indeed at
k = Θ(n2). We accomplish this through numerical ar-
guments based on the exact data generated through the
recursion for the second moment and a few more analytic
results. We formalize this with the following conjecture:

Conjecture 2 (Anticoncentration in Gaussian Boson
Sampling). Let 2n = o(

√
m) such that one operates in

the (conjectured) hiding regime. Then Gaussian Boson
Sampling does not anticoncentrate for k = O(n2), but
it weakly anticoncentrates with inverse normalized sec-
ond moment, m2(k, n) := M2

1 (k, n)/M2(k, n), scaling as
1/
√
πn for k = ω(n2).

Our evidence for Conjecture 2 is twofold and based on
results regarding the anticoncentration of the approxi-
mate distribution (see the Supplemental Material of the
companion piece Ref. [16] for details on how to convert
these statements to those about anticoncentration of the
exact distribution):

1. We provide a sequence of numerical plots of
log[(m2(k, n)

√
πn)−1] and its symmetric difference

with respect to n for various polynomial scalings
of k with n. The numerical plots of the function
itself show an exponential scaling when k = O(n2),
but that the function becomes approximately con-
stant when k = ω(n2). Similarly, the plots of the

13

symmetric difference are positive in the k = O(n2)
regime, but approximately vanish when k = ω(n2).

2. We show that, assuming the lower bound for
M2(k, n) is a good approximation, weak anticon-
centration holds for k = ω(n2). We also show that
there is a lack of anticoncentration when k = o(n).

We begin with the numerical evidence. In Fig. 7,
we set k = na and plot log[(m2(k, n)

√
πn)−1] for var-

ious values of a. We choose this quantity because, in
the asymptotic limit of large k, (m2(k, n)

√
πn)−1 ∼ 1,

but when k = 1, it is exponentially big [16]. There-
fore, we hope to use Fig. 7 to understand how this
quantity interpolates between the exponential and poly-
nomial behavior of m2(k, n)

−1. In Fig. 7(a), we plot
log[(m2(k, n)

√
πn)−1] for a = 0.5 to a = 4.0 with spac-

ing 0.5. We see that for a ≤ 2, this quantity seems to
linearly increase with n, meaning that m2(k, n)

−1 is ex-
ponentially large in n. However, for a > 2, it trends to
a small constant. Because m2(k, n) ∼ 1/

√
πn is derived

in the limit of asymptotically large k using the leading
order lower bound for the second moment in Eq. (27),
this suggests that the use of this lower bound is a good
approximation to the second moment when a > 2; this
aligns well with Fig. 6. Thus, we see that, when a > 2,
the normalized second moment trends to its asymptotic-
in-k value of

√
πn. In Fig. 7(b), we zoom in on the sus-

pected transition point and plot the same quantity when
a ∈ {1.95, 1.99, 2.00, 2.01, 2.05, 2.10, 2.15, 2.20}. We see
similar behavior in this plot; namely, at approximately
a = 2, the curves transition from growing in n to de-
creasing toward 0. To clarify this point even further, we
also plot the symmetric difference of the above quantity
as a function of n (excluding the minimum and maxi-
mum values of n). Here, the symmetric difference of a
function f(n), which we refer to as ∆nf(n), is defined as
(f(n+ 1)− f(n− 1))/2. Fig. 7(c) and Fig. 7(d) use the
same values of a as Fig. 7(a) and Fig. 7(b), respectively.
We see that, up to some finite size effects, when a > 2
this symmetric difference trends to 0, but it remains pos-
itive for a ≤ 2.
We next plot in Fig. 8 the symmetric difference

∆n log[(m2(k, n)
√
πn)−1] with respect to n at n = 39

(the largest n for which we can compute the symmet-
ric difference) as a function of a. We see the symmetric
difference vanish near a = 2, as would be expected if
the transition occurs at k = Θ(n2). The inset of Fig. 8
clarifies this by plotting the logarithm of this symmet-
ric difference such that its vanishing instead becomes a
divergence.

For our second, more analytic argument, we show
that if the lower bound is a good approximation to the
second moment, then weak anticoncentration holds for
k = ω(n2) and there is a lack of anticoncentration when
k = o(n).

First, consider the case a < 1. Note that k = na is
negligible to n (asymptotically in n). Therefore, up to

subleading order,

(k + 2n− 2)!!

(k − 2)!!
∼ (2n)!!. (32)

Using Eq. (28), which is a valid lower bound, we get

M2(k, n)

M1(k, n)2
≳

(2n− 1)!!44n

((2n− 1)!!(2n)!!)2
(33)

= 4n
(2n− 1)!!2

(2n)!!2
(34)

∼ 4n

πn
, (35)

which is exponentially big, demonstrating a lack of an-
ticoncentration (accounting for the subleading contribu-
tion of k does not change the conclusion). Here, we have
used Stirling’s approximation and

(2n)!!

(2n− 1)!!
∼

√
2πn(2n/e)n√
2(2n/e)n

=
√
πn. (36)

We now examine the case where k = na with a > 2.
We use that, according to Fig. 6, the lower bound
M2(k, n) ≥ (2n)!k2n is actually an extremely good ap-
proximation to the second moment. Here, k now domi-
nates n, so

(k + 2n− 2)!!

(k − 2)!!
∼

√
k2n = nan. (37)

Correspondingly, the normalized second moment scales
as

M2(k, n)

M1(k, n)2
∼ (2n− 1)!!(2n)!!k2n

(2n− 1)!!2k2n
(38)

=
(2n)!!

(2n− 1)!!
(39)

∼
√
πn. (40)

Therefore, when k = ω(n2), weak anticoncentration
holds (again, the inclusion of any subleading terms does
not change the conclusion). Note that this argument
is similar to the argument used to demonstrate the ex-
istence of the transition in the first place, but it uses
the fact that the second moment is already well approx-
imated by the leading order lower bound at k = ω(n2)
instead of just in the asymptotic limit of large k. Un-
fortunately, our current results are insufficient to more
formally handle the regime a ∈ [1, 2] regime.
To recap, we have shown the following results. First,

we have provided numerics in Figs. 7 and 8 that suggest
that

√
πn is a good approximation to the normalized sec-

ond moment when k = ω(n2). This is the value of the
normalized second moment that is calculated when one
uses the lower bound in Eq. (27) that is based on the
leading order term. Similarly, these plots numerically
indicate that when k = O(n2), the normalized second
moment grows exponentially in n, meaning there is a
lack of anticoncentration. Next, we have shown that, if

14

0 10 20 30 40
0

5

10

15

20

25

30

0 10 20 30 40
0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

0 10 20 30

0.0

0.5

1.0

5 10 15 20 25 30 35

- 0.04

- 0.02

0.00

0.02

0.04

0.06

(a) (b)

(c) (d)

FIG. 7. Plots of log[(m2(k, n)
√
πn)−1] and its symmetric difference, notated as ∆n, as a function of n for k = na. Recall

that m2(k, n) := M1(k, n)
2/M2(k, n) and, for asymptotically large k, m2(k, n) ∼ 1/

√
πn [16]. (a) a ∈ [0.5, 4.0], equally spaced

by 0.5. (b) a ∈ {1.95, 1.99, 2.00, 2.01, 2.05, 2.10, 2.15, 2.20} to show the regime around a = 2 more clearly. (c) The symmetric
difference of log[(m2(k, n)

√
πn)−1] with respect to n, again with a ∈ [0.5, 4.0]. (d) Zooming in on the symmetric difference

when a is around 2, with the same values as plot (b). Note that each of the curves in plots (a) and (b) are composed of
numerically exact data at 40 points (n ∈ {1, . . . , 40}) that are smoothed for visualization. The same holds for plots (c) and
(d), except there are only 38 points (n = 1 and n = 40 are excluded because we compute the symmetric difference). Finally,
while k physically must be an integer, we do not enforce that for these plots; we instead just using the polynomial expansion
of the moments to extend k to arbitrary real numbers.

the leading order is a good approximation to the sec-
ond moment, which, according to Fig. 6 occurs when
k = ω(n2), then the normalized second moment scales
as

√
πn, meaning weak anticoncentration holds in that

regime. We have also shown that for k = O(n), there is
a lack of anticoncentration. All together, the totality of
the evidence presented here strongly suggests the verac-
ity of Conjecture 2 and that the transition between lack
of anticoncentration and weak anticoncentration in the
approximate output distribution occurs at k = Θ(n2).

VII. CONCLUSION

In this work, we have studied the output distribution
of the prototypical setup for Gaussian Boson Sampling
in the hiding regime. Our main theoretical contribution
is the development of a recursion relation that allows one
to compute numerically exactly in polynomial time the
second moment of these output probabilities for any pho-

ton Fock sector. We additionally detail separate ways
to calculate individual coefficients of the polynomial ex-
pansion of the second moment. Together, these results
provide strong evidence for our conjecture that the tran-
sition in anticoncentration, whose existence is proven in
Ref. [16], occurs at k = Θ(n2).

Ideally we would have been able to derive a closed-
form expression for the polynomial description of the
second moment akin to Theorem 1, as this might have
allowed us to formally prove this conjecture, but we leave
this important question to future work. It would also be
nice to develop a better, more intuitive understanding for
why this transition occurs. It appears to be related to the
transition between collisional and collision-free outputs
in Scattershot Boson Sampling, but the connection is not
perfect, and further investigation seems worthwhile.

Related to all of these points, the precise nature of
the crossover at k = Θ(n2) is an interesting realm of
future study. Specifically, we conjecture that weak an-
ticoncentration holds for k = ω(n2) and there is a lack

15

1 2 3 4

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1 2 3 4

-10
-8
-6
-4
-2
0

FIG. 8. Symmetric difference ∆n log[(m2(k, n)
√
πn)−1] eval-

uated at n = 39. Here, k = na, and a represents the x-
axis. Again, physically, k must be an integer, but for this
plot we are simply using the polynomial expansions of the
moments where k can be an arbitrary real number. This
symmetric difference vanishes very close to a = 2, suggest-
ing that, when k = Ω(n2), the quantity m2(k, n)

√
πn is a

constant, meaning the normalized second moment appears
to scale as

√
πn. The inset simply plots the log of the y-axis

in the main plot (still with a along the x-axis) in order to
visualize more clearly the transition. The divergence occurs
somewhere around a = 2.03, but we suspect this difference is
due solely to finite-size effects. Beyond this divergence, the
symmetric difference is negative, meaning the logarithm is
complex and, hence, unplotted.

of anticoncentration when k = O(n2), which of course
places the transition at k = Θ(n2). But precisely how
the normalized moment behaves as we tune a through
a = 2 deserves special attention.

Our results open the door for answering other ques-
tions of interest. In particular, our results may make
it possible to evaluate how well certain classical algo-
rithms may sample from the output distribution or eval-
uate spoofing cross-entropy benchmarking in Gaussian
Boson Sampling. Further exploration here is worthwhile.
We also note that we have studied Gaussian Boson Sam-
pling with no noise and number-resolving detectors. It
would be interesting to see whether our techniques can
be expanded to imperfect settings, such as when photons
are partially distinguishable [25], or when the measure-
ment detectors only distinguish between the presence or
absence of photons [26].

Finally, the graph-theoretic approach that we have de-
veloped in this manuscript is surprisingly flexible, and
it deserves continued treatment. In Appendix D, we

present another way to use the graphs in Gn
2 in order

to develop a recursion that can solve for the second mo-
ment. In short, this other approach observes that there
are really only five types of black edges in our graphs:
ones that stay in row 1, ones that stay in row 3, and ones
that go between rows 1 and 2, rows 1 and 3, and rows
2 and 3. Because we are interested only in the number
of connected components, and because we sum over all
perfect matchings defined by red edges in each row, we
are free to drag the black edges around and order them
in new, convenient ways. Therefore, looking at these
graphs from the perspective of the total number of each
type of black edge allows us to conceive of a different
kind of recursion for the second moment. While we only
sketch the idea behind this alternative recursion, we be-
lieve that it may be a promising new way of looking at
the problem. In particular, this new approach allows us
to find an, admittedly, somewhat complicated, expres-
sion for c1 (that reproduces our expression for c1 found
via the original recursion up to n = 40). However, this
new approach should not be viewed as a strict alterna-
tive to what we have derived in this manuscript, but a
complementary approach that might yield new insights.
We leave exploring it to future work.

ACKNOWLEDGMENTS

We thank Changhun Oh, Bill Fefferman, Marcel
Hinsche, Max Alekseyev, and Benjamin Banavige for
helpful discussions. We thank Jacob Bringewatt for
providing feedback on Appendix A. A.E., J.T.I., and
A.V.G. were supported in part by the DoE ASCR Ac-
celerated Research in Quantum Computing program
(award No. DE-SC0020312), DARPA SAVaNT AD-
VENT, AFOSR MURI, DoE ASCR Quantum Testbed
Pathfinder program (awards No. DE-SC0019040 and
No. DE-SC0024220), NSF QLCI (award No. OMA-
2120757), NSF STAQ program, and AFOSR. Support is
also acknowledged from the U.S. Department of Energy,
Office of Science, National Quantum Information Science
Research Centers, Quantum Systems Accelerator. JTI
thanks the Joint Quantum Institute at the University of
Maryland for support through a JQI fellowship. D.H. ac-
knowledges funding from the US Department of Defense
through a QuICS Hartree fellowship. Specific product
citations are for the purpose of clarification only, and
are not an endorsement by the authors or NIST.

[1] P. Shor, in Proceedings 35th Annual Symposium on
Foundations of Computer Science (1994) pp. 124–134.

[2] S. Aaronson and A. Arkhipov, Theory Comput. 9, 143
(2013).

[3] D. Hangleiter and J. Eisert, Rev. Mod. Phys. 95, 035001
(2023).

[4] A. Serafini, Quantum Continuous Variables (CRC Press,
2017).

[5] A. P. Lund, A. Laing, S. Rahimi-Keshari, T. Rudolph,
J. L. O’Brien, and T. C. Ralph, Phys. Rev. Lett. 113,
100502 (2014).

https://doi.org/10.1109/SFCS.1994.365700
https://doi.org/10.1109/SFCS.1994.365700
https://doi.org/10.4086/toc.2013.v009a004
https://doi.org/10.4086/toc.2013.v009a004
https://doi.org/10.1103/RevModPhys.95.035001
https://doi.org/10.1103/RevModPhys.95.035001
https://doi.org/10.1201/9781315118727
https://doi.org/10.1103/PhysRevLett.113.100502
https://doi.org/10.1103/PhysRevLett.113.100502

16

[6] S. Rahimi-Keshari, A. P. Lund, and T. C. Ralph, Phys.
Rev. Lett. 114, 060501 (2015).

[7] C. S. Hamilton, R. Kruse, L. Sansoni, S. Barkhofen,
C. Silberhorn, and I. Jex, Phys. Rev. Lett. 119, 170501
(2017).

[8] R. Kruse, C. S. Hamilton, L. Sansoni, S. Barkhofen,
C. Silberhorn, and I. Jex, Phys. Rev. A 100, 032326
(2019).

[9] D. Grier, D. J. Brod, J. M. Arrazola, M. B. d. A. Alonso,
and N. Quesada, Quantum 6, 863 (2022).

[10] U. Chabaud and M. Walschaers, Phys. Rev. Lett. 130,
090602 (2023).

[11] A. Deshpande, A. Mehta, T. Vincent, N. Quesada,
M. Hinsche, M. Ioannou, L. Madsen, J. Lavoie, H. Qi,
J. Eisert, D. Hangleiter, B. Fefferman, and I. Dhand, Sci.
Adv. 8, eabi7894 (2022).

[12] H.-S. Zhong, H. Wang, Y.-H. Deng, M.-C. Chen, L.-C.
Peng, Y.-H. Luo, J. Qin, D. Wu, X. Ding, Y. Hu, P. Hu,
X.-Y. Yang, W.-J. Zhang, H. Li, Y. Li, X. Jiang, L. Gan,
G. Yang, L. You, Z. Wang, L. Li, N.-L. Liu, C.-Y. Lu,
and J.-W. Pan, Science 370, 1460 (2020).

[13] H.-S. Zhong, Y.-H. Deng, J. Qin, H. Wang, M.-C. Chen,
L.-C. Peng, Y.-H. Luo, D. Wu, S.-Q. Gong, H. Su, Y. Hu,
P. Hu, X.-Y. Yang, W.-J. Zhang, H. Li, Y. Li, X. Jiang,
L. Gan, G. Yang, L. You, Z. Wang, L. Li, N.-L. Liu, J. J.
Renema, C.-Y. Lu, and J.-W. Pan, Phys. Rev. Lett. 127,
180502 (2021).

[14] A. Barvinok, Combinatorics and Complexity of Parti-
tion Functions, Algorithms and Combinatorics, Vol. 30
(Springer International Publishing, Cham, 2016).

[15] L. Valiant, Theor. Comput. Sci 8, 189 (1979).
[16] A. Ehrenberg, J. T. Iosue, A. Deshpande, D. Hangleiter,

and A. V. Gorshkov, Transition of Anticoncentration
in Gaussian Boson Sampling (2023), arxiv:2312.08433
[quant-ph].

[17] F. Arute, K. Arya, R. Babbush, D. Bacon, J. C.
Bardin, R. Barends, R. Biswas, S. Boixo, F. G. S. L.
Brandao, D. A. Buell, B. Burkett, Y. Chen, Z. Chen,
B. Chiaro, R. Collins, W. Courtney, A. Dunsworth,
E. Farhi, B. Foxen, A. Fowler, C. Gidney, M. Giustina,
R. Graff, K. Guerin, S. Habegger, M. P. Harrigan,
M. J. Hartmann, A. Ho, M. Hoffmann, T. Huang,
T. S. Humble, S. V. Isakov, E. Jeffrey, Z. Jiang,
D. Kafri, K. Kechedzhi, J. Kelly, P. V. Klimov, S. Knysh,
A. Korotkov, F. Kostritsa, D. Landhuis, M. Lind-
mark, E. Lucero, D. Lyakh, S. Mandrà, J. R. Mc-
Clean, M. McEwen, A. Megrant, X. Mi, K. Michielsen,

M. Mohseni, J. Mutus, O. Naaman, M. Neeley, C. Neill,
M. Y. Niu, E. Ostby, A. Petukhov, J. C. Platt, C. Quin-
tana, E. G. Rieffel, P. Roushan, N. C. Rubin, D. Sank,
K. J. Satzinger, V. Smelyanskiy, K. J. Sung, M. D. Tre-
vithick, A. Vainsencher, B. Villalonga, T. White, Z. J.
Yao, P. Yeh, A. Zalcman, H. Neven, and J. M. Martinis,
Nature 574, 505 (2019).

[18] C. Neill, P. Roushan, K. Kechedzhi, S. Boixo, S. V.
Isakov, V. Smelyanskiy, A. Megrant, B. Chiaro,
A. Dunsworth, K. Arya, R. Barends, B. Burkett,
Y. Chen, Z. Chen, A. Fowler, B. Foxen, M. Giustina,
R. Graff, E. Jeffrey, T. Huang, J. Kelly, P. Klimov,
E. Lucero, J. Mutus, M. Neeley, C. Quintana, D. Sank,
A. Vainsencher, J. Wenner, T. C. White, H. Neven, and
J. M. Martinis, Science 360, 195 (2018).

[19] S. Boixo, S. V. Isakov, V. N. Smelyanskiy, R. Babbush,
N. Ding, Z. Jiang, M. J. Bremner, J. M. Martinis, and
H. Neven, Nature Phys 14, 595 (2018), arxiv:1608.00263.

[20] J. Bezanson, A. Edelman, S. Karpinski, and V. B. Shah,
SIAM Review 59, 65 (2017).

[21] J. T. Iosue and A. Ehrenberg, jtiosue/LXEB GitHub
repository (2024), https://github.com/jtiosue/LXEB.

[22] B. Gupt, J. Izaac, and N. Quesada, Journal of Open
Source Software 4, 1705 (2019).

[23] A. Björklund, B. Gupt, and N. Quesada, ACMJ. Exp.
Algor. 24, 1.11:1 (2019).

[24] A. P. Lund, A. Laing, S. Rahimi-Keshari, T. Rudolph,
J. L. O’Brien, and T. C. Ralph, Phys. Rev. Lett. 113,
10.1103/PhysRevLett.113.100502 (2014).

[25] J. Shi and T. Byrnes, npj Quantum Inf 8, 1 (2022).
[26] N. Quesada, J. M. Arrazola, and N. Killoran, Phys. Rev.

A 98, 062322 (2018).
[27] G. H. G. H. Hardy, Some Famous Problems of the The-

ory of Numbers and in Particular Waring’s ProblemAn
Inaugural Lecture Delivered before the University of Ox-
ford (Project Gutenberg, 2011).

[28] W. R. Inc., Mathematica, Version 14.0 (2024), cham-
paign, IL, 2024.

[29] robjohn (https://math.stackexchange.com/users/13854/robjohn),
Binomial sum gives 4n, Math-
ematics Stack Exchange (2016),
uRL:https://math.stackexchange.com/q/1595627 (ver-
sion: 2016-01-01), https://math.stackexchange.com/q/1595627.

[30] OEIS Foundation Inc., The On-Line Encyclopedia of In-
teger Sequences (2022), published electronically at http:
//oeis.org.

[31] T. van Aardenne-Ehrenfest and N. G. de Bruijn, Simon
Stevin. 28, 203 (1951).

https://doi.org/10.1103/PhysRevLett.114.060501
https://doi.org/10.1103/PhysRevLett.114.060501
https://doi.org/10.1103/PhysRevLett.119.170501
https://doi.org/10.1103/PhysRevLett.119.170501
https://doi.org/10.1103/PhysRevA.100.032326
https://doi.org/10.1103/PhysRevA.100.032326
https://doi.org/10.22331/q-2022-11-28-863
https://doi.org/10.1103/PhysRevLett.130.090602
https://doi.org/10.1103/PhysRevLett.130.090602
https://doi.org/10.1126/sciadv.abi7894
https://doi.org/10.1126/sciadv.abi7894
https://doi.org/10.1126/science.abe8770
https://doi.org/10.1103/PhysRevLett.127.180502
https://doi.org/10.1103/PhysRevLett.127.180502
https://doi.org/10.1007/978-3-319-51829-9
https://doi.org/10.1007/978-3-319-51829-9
https://doi.org/10.1016/0304-3975(79)90044-6
https://doi.org/10.48550/arXiv.2312.08433
https://doi.org/10.48550/arXiv.2312.08433
https://arxiv.org/abs/2312.08433
https://arxiv.org/abs/2312.08433
https://doi.org/10.1038/s41586-019-1666-5
https://doi.org/10.1126/science.aao4309
https://doi.org/10.1038/s41567-018-0124-x
https://arxiv.org/abs/1608.00263
https://doi.org/10.1137/141000671
https://github.com/jtiosue/LXEB
https://github.com/jtiosue/LXEB
https://github.com/jtiosue/LXEB
https://doi.org/10.21105/joss.01705
https://doi.org/10.21105/joss.01705
https://doi.org/10.1145/3325111
https://doi.org/10.1145/3325111
https://doi.org/10.1103/PhysRevLett.113.100502
https://doi.org/10.1038/s41534-022-00557-9
https://doi.org/10.1103/PhysRevA.98.062322
https://doi.org/10.1103/PhysRevA.98.062322
https://www.wolfram.com/mathematica
https://math.stackexchange.com/q/1595627
https://arxiv.org/abs/https://math.stackexchange.com/q/1595627
http://oeis.org
http://oeis.org

17

In the appendices, we provide details and derivations that supplement the discussion in the main text.

• Appendix A: We discuss the classical complexity of evaluating the recursion and show that it is efficient (i.e.,
the time and space required scale polynomially) in the Fock sector n;

• Appendix B: We provide the graph-theoretic details for how to derive the recursion;

• Appendix C: We discuss how to compute individual coefficients of the polynomial expansion of the second
moment. Specifically, we give one method to calculate the leading and first subleading terms in the polynomial
expansion of the second moment;

• Appendix D: We discuss an alternative method for developing a recursion to the solve for the second moment.
We also apply this alternative picture to find an expression for the constant term in the polynomial expansion
of the second moment.

Appendix A: Classical Complexity of Evaluating Recursion

In this appendix, we argue that the numerical evaluation of the recursion and, hence, the second moment, is
classically efficient (that is, the runtime and space used are at most polynomial) in n, which corresponds to the Fock
sector of interest in the output samples.

We recall the setup of the recursion as we describe it in the main text. Specifically, we define

g(n, a12, a13, a23) :=
∑

λ∈G2
n(a12,a13,a23)

kC(λ). (A1)

G2
n(a12, a13, a23) is the set of second-moment graphs of order n with aij red edges that cross between rows i and j.

C(λ) is the number of connected components of λ. The second moment is given by (2n − 1)!!g(n, 0, 0, 0). We then
write down the recursion using these g(n, a12, a13, a23) as

g(n, a12, a13, a23) =
∑

b12,b13,b23

c(a12, a13, a23, b12, b13, b23)g(n− 1, b12, b13, b23). (A2)

We list the following constraints on a, which is shorthand for (a12, a13, a23). First, a12+a13, a12+a23, and a13+a23
(the edges that exit the first, second, and third rows respectively) must be even. Second, a12+a13, a12+a23, a13+a23
must all be less than or equal to 2n, as there cannot be more than 2n edges coming out of a row with only 2n vertices
given that there is exactly one red edge incident on every vertex. Finally, we also add here that, clearly, a12, a13, a23
are non-negative. These constraints imply a finite number of valid vectors a = (a12, a13, a23) for a given order n,
and any vector satisfying these constraints corresponds to a valid set of graphs and, therefore, a term g(n,a) in the
recursion. We provide an example of all possible a when n = 4 in Table A.1.

m a

0 (0, 0, 0)

1 ∅
2 (2, 0, 0)

3 (1, 1, 1)

4 (2, 2, 0), (4, 0, 0)

5 (3, 1, 1)

6 (6, 0, 0), (4, 2, 0), (2, 2, 2)

7 (5, 1, 1), (3, 3, 1)

8 (8, 0, 0), (6, 2, 0), (4, 4, 0), (4, 2, 2)

9 (7, 1, 1), (5, 3, 1), (3, 3, 3)

10 (6, 2, 2), (4, 2, 2)

11 (5, 3, 3)

12 (4, 4, 4)

TABLE A.1. All possible a, up to permutations of the vector elements, for 2n = 8. Each entry satisfies the constraints
that a12 + a13, a12 + a23, and a13 + a23 are even and less than or equal to 2n, a12, a13, and a23 are non-negative, and
a12 + a13 + a23 = m.

18

Clearly, as n grows, the number of possible a for which one must evaluate g(n,a) also grows. However, we can
bound this growth as being polynomial in n using some arguments about partitions. Recall that a partition of a
positive integer m of size s is a set (i.e., order does not matter) of s positive integers whose sum is m. A weak
partition of m of size s relaxes the positivity constraint of the set such that it contains s non-negative elements (m
is still positive).

Let m := a12 + a13 + a23. Then m ≤ 3n, which follows from the fact that

2a12 + 2a13 + 2a23 = (a12 + a13) + (a12 + a23) + (a13 + a23) ≤ 6n. (A3)

The conditions listed above on a imply that each a is a weak partition of size 3 of m ≤ 3n that satisfies two further
constraints: all 3 elements of the set must have the same parity as m, and no element can be larger than 2n.
Now, the number of partitions of m of size at most 3 is ⌊(m + 3)2/12⌉ [27] (note that ⌊M⌉ refers to the closest

integer to M). Therefore, the number of partitions of m of size exactly 3, or p3(m), is bounded by this value, which

implies that
∑3n

m=0 p3(m) = O(n3). In turn, the number of a, up to permutations of the elements of a, is bounded
by O(n3) (because they form an even more restricted class of weak permutations). We can overcount for these
permutations with a simple constant multiplicative factor of 3! (this overcounts because, when numbers are repeated
in the partition, there are fewer distinct permutations). Thus, we have a polynomial bound on the number of terms
in our recursion at any Fock sector n (note that we could tighten this bound a bit by accounting more precisely for
the parity constraint on the elements a, but, because we are interested only in classical efficiency, this polynomial
bound that arises from considering only size-3 partitions is sufficient).

To be sure that the recursion is efficiently computable, however, the actual values of the terms in the recursion
must not grow too quickly. In particular, recall that each term g(n,a) has a polynomial expansion in k of order at
most 3n (this is the largest number of connected components possible when each one must have at least 2 vertices).
The sum of the coefficients of g(n,a) is the same as the number of graphs in G2

n(a12, a13, a23), which we derived to
be

|G2
n(a12, a13, a23)| =

(
2n

a12

)(
2n− a12

a13

)(
2n

a12

)(
2n− a12

a23

)(
2n

a13

)(
2n− a13

a23

)
a12!a13!a23!

× (2n− a12 − a13 − 1)!!(2n− a12 − a23 − 1)!!(2n− a13 − a23 − 1)!!4n. (A4)

This is, at most, factorially big in n, which means that the number of bits needed to store these numbers, and, hence,
g(n,a) is polynomial in n.
Therefore, we have a polynomial bound on the number of terms in the recursion, as well as on the space needed

to represent each of these terms. Finally, because the actual recursion consists only of polynomial numbers of
multiplication and addition, which can each be accomplished in time polynomial in the size of the inputs, the actual
computation is efficient.

Appendix B: Building the Recursion

We now describe precisely how to derive and evaluate the recursion relation Eq. (25), which we copy again here
for convenience:

g(n, a12, a13, a23) =
∑

b12,b13,b23

c(a12, a13, a23, b12, b13, b23)g(n− 1, b12, b13, b23). (B1)

We note that we implement the full recursion [21] in both the Julia programming language [20] and Mathematica
[28]. Recall that g(n, a12, a13, a23) is a polynomial in k where the coefficient in front of ki is the number of graphs of
type a = (a12, a13, a23) that have i connected components. Again, a graph of type a has aij edges that go between
rows i, j.
We first describe the base case, i.e. g(1, a12, a13, a23) for all valid vectors a = (a12, a13, a23). We then describe

how to handle each of the possible 17 cases that contribute to the recursion that are depicted in Fig. 4, which is
copied again here for convenience.

The way that we handle each case is as follows. We consider all graphs of order n such that the leftmost two
columns, which, recall, we refer to as C1,2, have red edges that correspond to that case. We then “integrate out”
these edges to determine how to write the contribution of that case at order n in terms of the terms at order n− 1.
When we say integrate out, we mean that we collapse any path that goes through C1,2 into a new edge that remains
entirely in the graph of order n− 1 by collapsing together vertices connected by these paths. In doing this, we must
account for three main contributions: (1) how many loops are contained solely within C1,2—each of these loops, of
course, leads to a factor of k multiplied by the contribution at order n−1; (2) what edges are erased when integrating

19

(5)

(6)

(7)

(8)

(9)

(10)

(11)

(12)

(13)

(14)

(15)

(16)

(17)

(6s)

(5s)(1)

(2)

(3)

(4)

(2s) (10s)

(9s) (13s)

(15s)

FIG. B.1. Copy of Fig. 4. List of 17 cases (up to symmetry) for how the first two columns in a graph of order n can connect
into the rest of the graph.

out the case, as well as what edges are created after collapsing the paths into new edges—this tells us what b at
lower order contribute to a at a higher order; (3) a combinatorial factor accounting for the fact that integrating out
C1,2 in multiple graphs at order n could lead to the same graph at order n − 1, meaning we may need to multiply
the contributions at order n− 1 by something to get the correct final answer. The former loop calculation is usually
quite simple, but the latter vectorial and combinatorial calculations require more significant casework.

In the abstract, this is quite complicated, but we explain it more thoroughly through detailed examples as we
proceed. We group our analysis of these cases into four categories corresponding to the number of edges, i.e. 0, 2, 4,
or 6, that protrude from the cases: (1)–(4), (5)–(12), (13)–(16), and (17), respectively. However, as mentioned, we
begin with the base cases, to which we turn now.

1. Base Cases for Recursion

Here we calculate the base cases for the recursion; that is, we determine all valid a when n = 1, construct all
graphs with each a, and count their connected components. Recall that the vector a must satisfy non-negativity,
pairwise sums being even, and pairwise sums being at most 2n; should any one of these conditions not be met, then
g(n,a) = g(n, a12, a13, a23) = 0. For n = 1, there are 5 possible options for a: (0, 0, 0), (2, 0, 0), (0, 2, 0), (0, 0, 2),
(1, 1, 1). It remains then to construct the graphs and count their connected components. This is tedious, but the
diagrams are shown in Figs. B.2 and B.3, and the final results are

g(1, 0, 0, 0) = 2k2 + 2k, (B2)

g(1, 2, 0, 0) = k3 + 3k2 + 4k, (B3)

g(1, 0, 0, 2) = k3 + 3k2 + 4k, (B4)

g(1, 0, 2, 0) = 2k2 + 6k, (B5)

g(1, 1, 1, 1) = 2k3 + 14k2 + 16k. (B6)

This completes the base cases, and we now move on to the recursion.

20

(2s)

(3)

(1)

(2)

FIG. B.2. Base cases corresponding to (1), (2), (2s), and (3). Counting the connected components of the graphs in each case
yields contributions of 2k2 + 2k, k3 + 3k2 + 4k, k3 + 3k2 + 4k, and 2k2 + 6k, respectively.

(4)

FIG. B.3. Base case corresponding to (4). Counting the connected components of the graphs in each case yields 2k3+14k2+16k.

21

2. Cases (1)–(4)

We now handle cases (1)–(4). There are no protruding edges, meaning many of the contributions are easy to
derive because these cases are “independent” of from the lower order graph consisting of the final n − 1 pairs
columns. Therefore, when we integrate out C1,2, none of the paths affect the graph at lower order, meaning it is
much simpler to calculate their contribution.

In fact, it is simple to see that the evaluation of the loops mimics exactly the calculation of the base cases:

Loop (1) → 2k2 + 2k, (B7)

Loop (2) → k3 + 3k2 + 4k, (B8)

Loop (2s) → k3 + 3k2 + 4k, (B9)

Loop (3) → 2k2 + 6k, (B10)

Loop (4) → 2k3 + 14k2 + 16k. (B11)

(B12)

Next, examining the diagrams for each case, one can derive simple relationships between a and b that yield a
nontrivial contribution in Eq. (B1):

Vector (1) → (b12, b13, b23) = (a12, a13, a23), (B13)

Vector (2) → (b12, b13, b23) = (a12 − 2, a13, a23), (B14)

Vector (2s) → (b12, b13, b23) = (a12, a13, a23 − 2), (B15)

Vector (3) → (b12, b13, b23) = (a12, a13 − 2, a23), (B16)

Vector (4) → (b12, b13, b23) = (a12 − 1, a13 − 1, a23 − 1). (B17)

(B18)

These can be understood by looking at the diagram for each case and observing what kind of edges are eliminated
when collapsing all of the paths that pass through the vertices in C1,2.

Finally, there are no combinatorial contributions because there are no protruding edges that have to be connected
to the existing graph. That is, any graph that comes from integrating out one of these cases arises uniquely.

Therefore, we can easily combine everything to get the contributions to the recursion from each of these cases:

g(n, a12, a13, a23)case(1) = (2k2 + 2k)g(n− 1, a12, a13, a23), (B19)

g(n, a12, a13, a23)case(2) = (k3 + 3k2 + 4k)g(n− 1, a12 − 2, a13, a23), (B20)

g(n, a12, a13, a23)case(2s) = (k3 + 3k2 + 4k)g(n− 1, a12, a13, a23 − 2), (B21)

g(n, a12, a13, a23)case(3) = (2k2 + 6k)g(n− 1, a12, a13 − 2, a23), (B22)

g(n, a12, a13, a23)case(4) = (2k3 + 14k2 + 16k)g(n− 1, a12 − 1, a13 − 1, a23 − 1). (B23)

Note that we have introduced a notation g(n, a12, a13, a23)case(i), which simply refers to the contribution to
g(n, a12, a13, a23) from graphs where the vertices in C1,2 and their corresponding red edges fall into case (i). That
is, g(n,a) =

∑
i∈cases g(n,a)case(i).

3. Cases (5)–(12)

We now tackle cases (5)–(12), which have two edges that protrude and attach to the rest of the graph. Because of
these two protruding edges, we have to carefully derive all three of the loop, vectorial, and combinatorial contributions.

We start with the vectorial contributions, as understanding them allows us to more easily explain and derive the
loop and combinatorial contributions. We start by carefully walking through case (5), which contains two edges
protruding from the first row. We take an existing graph of order n where C1,2 and the respective red edges match
case (5). We then count how the numbers of edges of each type change after collapsing all of the paths that pass
through the vertices in C1,2 into edges that lie within the other 2(n− 1) columns.

Now, it is crucial to observe the following extremely important fact for all cases (5)–(12): the two protruding
edges are always part of the same path that goes through C1,2, regardless of which of the four types of black edges
are present between the vertices in C1,2. Therefore, when C1,2 is integrated out in graphs that match these cases,
the edge that is created in the lower order graph is simply given by the two rows upon which those protruding edges

22

are incident. That is, if the protruding edges connected to rows i and j, then, after integrating, an edge of type ij
is created.

Now, there are, of course, 6 types of edges that can be created by collapsing a path: 11, 22, 33, 12, 13, and 23.
However, it is somewhat convenient to actually describe 9 possible edges, 11, 22, 33, 12, 13, 23, 21, 31, and 32. The
last three are equivalent to 12, 13, and 23 edges, respectively, but we order the edges in this way to account for the
two possible ways that the protruding edges can connect into the graph (that is, which edge connects to row i or j,
for example). Note that this separation is extraneous for certain cases, i.e. those with two edges protruding from the
same row, but it is useful when considering cases with edges protruding from different rows.
To determine the vector contribution for a graph of order n with a12, a13, and a23 edges, we consider what edges

b12, b13, and b23 on the graph of order n − 1 remain after integrating out C1,2. Case (5) has two protruding edges
coming from the first row, and then additional red edges of type 22 and 33. These 22 and 33 edges do not change
the 12, 13, or 23 edge counts. Therefore, the only changes come from the collapse of the path associated with the
two protruding edges from row 1.

Let us say that these two protruding edges are originally incident on rows 2 and 3. In this example, this means
that when integrating out C1,2, we lose one edge of type 12 and one of type 13, but we create one of type 23.
Therefore, we must have that b12 = a12 − 1, b13 = a13 − 1, and b23 = a23 + 1. Or, if we define ∆ij := bij − aij ,
then (∆12,∆13,∆23) = (−1,−1,+1). We then consider all possible vertices that these two protruding edges could
have been connected to in the remainder of the graph, and that defines all possible g(n − 1, b12, b13, b23) that can
contribute to g(n, a12, a13, a23)case(5).
Now, we must also consider some combinatorial factors C. The combinatorial factors are really just a shorthand

for determining how many times a contribution g(n − 1, b12, b13, b23) shows up when integrating out a given case,
here case (5), from all the relevant graphs of order n. This is because different graphs at order n, when appropriately
collapsed, lead to the same graph at order n − 1. The combinatorial factor, then, is just a way of encoding this
information.

Say that we are again considering an example where the original protruding edges attach to vertices in rows 2 and
3. Then an edge of type 23 is created. But if we look from the perspective of the lower order graph, any of the
23 edges could have been the one that was generated—that is, for some graph of order n with case (5) integrated
out, a different 23 edge that is present is the one generated. Therefore, when we sum up all the contribution from
integrating out case (5) over all relevant graphs of order n, we get a factor of b23. Note also that, as we derived
above, b23 = a23 + 1. Also note that, were we looking at protruding edges attached to the same row, we would get
an additional factor of 2 due to the ambiguity of which edge attaches to which endpoint.

Finally, we consider the loop contribution. The calculation for case (5) is a relatively straightforward diagrammatic
proof, which is detailed in Fig. B.4. In short, we draw all possible diagrams consistent with case (5) and count up the
loops that are induced. There are only four cases, as the red edges are essentially fixed and there are four possible
sets of black edges. The result is a factor 2k + 2. That is, there are two sets of black edges that lead to an internal
loop, leading to an extra factor of k, and there are two sets of black edges where the protruding edges snake through
all vertices in C1,2 such that collapsing them just leads to a graph of order n− 1 without any extra loop factors.

(5) 2k + 2

FIG. B.4. Loop contribution for case (5).

23

So, putting all of the information together, we have that a full contribution from case (5) is

g(n, a12, a13, a23)case(5) = (2k + 2)[(2b11 + 2b12 + 2b13)g(n− 1, a12, a13, a23)

+ 2b22g(n− 1, a12 − 2, a13, a23)

+ 2b23g(n− 1, a12 − 1, a13 − 1, a23 + 1)

+ 2b33g(n− 1, a12, a13 − 2, a23)]

= (2k + 2)[(2(n− 1) + a12 + a13)g(n− 1, a12, a13, a23)

+ (2(n− 1)− (a12 − 2)− a23)g(n− 1, a12 − 2, a13, a23)

+ 2(a23 + 1)g(n− 1, a12 − 1, a13 − 1, a23 + 1)

+ (2(n− 1)− (a13 − 2)− a23)g(n− 1, a12, a13 − 2, a23)].

(B24)

This includes the loop, combinatorial, and vectorial factors. We also note that, should any of the combinatorial
factors actually be negative, they should be set to 0, as that indicates that the graph that is constructed at lower
order when integrating out the given case does not really exist (this is also handled by the vector input to g being
negative—that is, one of the edge counts b12, b13, b23 is negative). One can get the contribution from case (5s) by
simply mapping 1 ↔ 3.

We list the combinatorial and vectorial contributions for cases (5)–(8) in Table B.1 and cases (9)–(12) in Table B.2
(the main difference in the latter cases is that there is no longer a symmetry between red edges attaching to vertices
ij and ji because, by convention, we attach the top protruding edge to the vertex in row i and the bottom protruding
edge to the vertex in row j, which gives us different types of new edges, generically). The first column of these tables
gives what kind of edge is created at order n − 1. The second column tells us the combinatorial factor. The next
four multicolumns give the vector information for each of the cases. Note that we do not give the symmetric cases,
as they can be obtained by simply mapping 1 ↔ 3.

(5) (6) (7) (8)

Protruding Endpoints C ∆12 ∆13 ∆23 ∆12 ∆13 ∆23 ∆12 ∆13 ∆23 ∆12 ∆13 ∆23

11 2b11 0 0 0 0 0 -2 -2 0 0 -2 -2 0

12 b12 0 0 0 0 0 -2 0 0 0 0 -2 0

13 b13 0 0 0 0 0 -2 -1 +1 -1 -1 -1 -1

21 b12 0 0 0 0 0 -2 0 0 0 0 -2 0

22 2b22 -2 0 0 -2 0 -2 0 0 0 0 -2 0

23 b23 -1 -1 +1 -1 -1 -1 0 0 0 0 -2 0

31 b13 0 0 0 0 0 -2 -1 +1 -1 -1 -1 -1

32 b23 -1 -1 +1 -1 -1 -1 0 0 0 0 -2 0

33 2b33 0 -2 0 0 -2 -2 0 0 -2 0 -2 -2

TABLE B.1. Information for vectorial and combinatorial contributions to cases (5)–(8). Observe that there is a symmetry
when the endpoints of the protruding edges are ij and ji. Also observe that, when the endpoints are the same, i.e. ii, there is
an extra factor of 2 in the combinatorial term because of the ambiguity between how the protruding edges originally attach.

We also provide the loop contributions for cases (5)–(12) in Table B.3. These are derived in an analogous way to
the diagrammatic approach in Fig. B.4, but there are many more graphs to consider. Therefore, using all of this
information, we can derive an equivalent version of Eq. (B24) for each case up to (12) (including the symmetric
ones), accounting for all of their contributions.

4. Cases (13)–(16)

We now move on to more complicated cases that have four protruding edges. The vectorial contribution is more
difficult to calculate, as we must account for 34 = 81 possibilities for how the protruding edges attach to the lower

24

(9) (10) (11) (12)

Protruding Endpoints C ∆12 ∆13 ∆23 ∆12 ∆13 ∆23 ∆12 ∆13 ∆23 ∆12 ∆13 ∆23

11 2b11 -2 0 0 -1 -1 -1 0 -2 0 -1 -1 -1
12 b12 0 0 0 +1 -1 -1 +1 -1 -1 0 0 -2
13 b13 -1 +1 -1 0 0 -2 0 0 0 -1 +1 -1
21 b12 -2 0 0 -1 -1 -1 0 -2 0 -1 -1 -1
22 2b22 -2 0 0 -1 -1 -1 -1 -1 -1 -2 0 -2
23 b23 -2 -0 0 -1 -1 -1 -1 -1 +1 -2 0 0
31 b13 -2 0 0 -1 -1 -1 0 -2 0 -1 -1 -1
32 b23 -1 -1 +1 0 -2 0 0 -2 0 -1 -1 -1
33 2b33 -1 -1 -1 0 -2 -2 0 -2 0 -1 -1 -1

TABLE B.2. Information for vectorial and combinatorial contributions to cases (9)–(12). Observe that there is no longer a
symmetry between ij and ji, but the ii cases still have an extra factor of 2 in the combinatorial term because the ambiguity
between how the protruding edges originally attach still exists.

Case Loop contribution

(5) 2k + 2
(5s) 2k + 2
(6) k2 + 3k + 4
(6s) k2 + 3k + 4
(7) 2k + 2
(8) 2k + 6
(9) 2k2 + 6k + 8
(9s) 2k2 + 6k + 8
(10) 2k2 + 14k + 16
(10s) 2k2 + 14k + 16
(11) 4k + 12
(12) 2k2 + 14k + 16

TABLE B.3. Loop contributions for each of the cases (5)–(12). Notice that symmetric versions of cases have the same loop
contribution; only their vectorial and combinatorial contributions are different.

order graph. Furthermore, there is more interaction between the vectorial, combinatorial, and loop terms. This did
not occur in the previous sets of cases because the protruding edges were always part of the same path through the
black edges attached to the vertices in C1,2. However, one must now keep track of which protruding edges connect
to one another through the vertices in C1,2.
For example, we look at the possibilities for case (13), shown in Fig. B.5. By convention, we take the top left

vertex to row a, the top right vertex to row b, the middle left vertex to row c, and the middle right vertex to row d,
where a, b, c, d ∈ {1, 2, 3}. We see that, when the black edges attached to the vertices in C1,2 are type-1, then the red
edges that protrude from the top row are connected to one another, which means that one generates an edge of type
ab when collapsing this path. However, if the black edges associated with C1,2 are type-2, then it is instead ac and
bd that are connected. In total, one of the possible types of black edges connect edges ab and cd, and three connect
ac and bd. In the case where ab and cd are connected, this means that we generate edges of type ab and cd but we
lose edges of type 1a, 1b, 2c, 2d. When ac and bd are connected, we of course gain edges of type ac and bd, but we
still lose edges of type 1a, 1b, 2c, 2d. We use these observations to build up the vectorial contribution of the graph by
summing over all 81 possibilities of a, b, c, d ∈ {1, 2, 3}. This is tedious to do by hand, but simple numerically.
We need also account for the loop and combinatorial factors that associate to each of these vectorial contributions.

Luckily, we do not need to consider 81 cases parameterized by a, b, c, d, but we must consider each of the subcases
defined by the four possible sets of black edges in connecting the vertices in C1,2. Loop-wise, we simply need to count
how many loops are induced. Working from the left to right in Fig. B.5, we get 0, 0, 0, 1 loops, respectively, leading

25

(13)

=

a
b

c
d

a
b

c
d

a
b

c
d

a
b

c
d

FIG. B.5. Evaluation of case (13). By convention, we take the top left vertex to row a, the top right vertex to row b, the
middle left vertex to row c, and the middle right vertex to row d, where a, b, c, d ∈ {1, 2, 3}. The types of edges that are
created after integrating out the two leftmost columns are determined by the type of the black edges.

to factors of 1, 1, 1, k, respectively. The combinatorial factor is given by

2δab2δcd
[
(δacδbd + δadδbc − δabcd)2

(
bab
2

)
+ (1− (δacδbd + δadδbc − δabcd))babbcd

]
(B25)

in the case where edges ab and cd are connected. If instead ac and bd are connected, we replace each instance of ab
and cd with ac and bd, respectively. We then again account for all 81 cases and attach each combinatorial factor and
loop factor to its associated vectorial term.

To understand Eq. (B25), consider the following, where we assume we are dealing with type-1 black edges so
that we are creating edges ab and cd. We get a factor of 2 when a and b are the same because they correspond to
protruding edges coming from the same row, meaning there is a choice of which edge to connect where. The same
holds for c and d. If all four edges connect to the same row, i.e. a = b = c = d, then one might naively think we need
to add an extra factor of 6 (to get to a total of 4! possible connections), but this is incorrect, as ab and cd are always
paired given their connection through case (13) with black edges of type-1. Now, if a = c and b = d or a = d and
b = c, then the two edges ab and cd are the same type, meaning we are creating two edges of the same type in the
graph of order n− 1. There are therefore

(
bab

2

)
choices of which edges these are in the lower order graph, but we also

need an extra factor of 2 to decide which one the groups of protruding edges each maps to. If ab and cd correspond
to different types of edges, then we just get a factor of babbcd, as we simply need to account for which of these edges
are generated through the integration process.

Therefore, we see that cases (13)–(16) raise substantially more complications in their evaluation. In particular,
the type of black edges leads to far more interaction between the loop, vectorial, and combinatorial contributions
that must be carefully combined in code to achieve the correct recursion. While we have only described case (13) in
detail, cases (14)–(16) follow in the exact same manner, though there are more graphs to consider in the cases where
two rows have only one protruding edge.

5. Case (17)

Case (17) raises the same issues, though there are only four graphs to consider. However, we have 243 = 36 possible
options for how the protruding edges may connect to the graph at lower order (this is true in general, but not all of
these are possible when n is small). See Fig. B.6. We repeat the convention for cases (13)–(16) by taking the top
left vertex to row a, the top right vertex to row b, the middle left vertex to row c, and the middle right vertex to
row d, but we now also take the bottom left to e and the bottom right to f , where a, b, c, d, e, f ∈ {1, 2, 3}. Now, for
type-1 black edges, we create ab, ce, and df ; for type-2, it is af , bd, and ce; for type-3 it is ac, be, and df ; and for
type-4 it is ac, bd, and ef . We always lose edges of type 1a, 1b, 2c, 2d, 3e, 3f regardless of the type of the black edges.
Furthermore, the loop contribution is always a factor of 1, as there are no internal loops to case (17).

26

(17)

=

a
b

c
d

a
b

c
d

a
b

c
d

a
b

c
d

e
f

e
f

e
f

e
f

FIG. B.6. Evaluation of case (17). We repeat the convention for cases (13)–(16) by taking the top left vertex to row a, the top
right vertex to row b, the middle left vertex to row c, and the middle right vertex to row d, but we now also take the bottom
left to e and the bottom right to f , where a, b, c, d, e, f ∈ {1, 2, 3}. The types of edges that are created are still determined by
the type of the black edges.

The combinatorial factor, however, is quite complicated. Assume for now that we are working with type-1 black
edges such that ab, ce, and df are linked. The combinatorial factor is

(2δab)33!

(
bab
3

)
×1[{a, b} = {c, e} = {d, f}] (B26)

+2δab2δce × 2

(
bab
2

)
× 2δdf bdf ×1[{a, b} = {c, e} ≠ {d, f}] (B27)

+2δab2δdf × 2

(
bab
2

)
× 2δcebce ×1[{a, b} = {d, f} ≠ {c, e}] (B28)

+2δce2δdf × 2

(
bce
2

)
× 2δabbab ×1[{a, b} ≠ {c, e} = {d, f}] (B29)

+2δab2δce2δdf babbcebdf ×1[{a, b} ≠ {c, e} ≠ {d, f}]. (B30)

Here, 1[A] is an indicator function that is 1 if statement A is true and 0 if it is false. For example, 1[{a, b} =
{c, e}, {d, f}] is 1 if {a, b}, {c, e}, and {d, f} are all equal as sets (that is, order does not matter). The middle three
lines [Eqs. (B27) to (B29)] are just repetitions of the combinatorial factors for cases (13)− (16), but accounting for
which sets of four edges may be sent to the same row. The last line [Eq. (B30)] is simple and accounts for the case
where all of the edge types ab, ce, df are different. The first line [Eq. (B26)] requires a bit of explanation. In the case
where a ̸= b, we simply have to choose three edges of type ab where the order matters (they each could have been
created by integrating out different graphs at a higher order). In the case where a = b, this is still the case, but now
we need a factor of 2 for each edge, as we can flip which vertices are connected where.

Again, it is hard to account for all of these elements by hand, but it is simple numerically. With this final case
sorted out, we simply combine contributions of all of the cases g(n,a)case(i) to find g(n,a).

Appendix C: Computing Individual Coefficients

In this appendix, we discuss the various methods by which one can compute individual coefficients in the polynomial
expansion of the second moment. Recall that, per Theorem 2, the second moment may be expanded as

M2(k, n) = (2n− 1)!!

2n∑
i=1

cik
i. (C1)

27

Ideally, one would simply be able to find a closed functional form for the right-hand side of this equation (as was
possible for the equivalent definition of the first moment). But, unfortunately, such a result currently eludes us.
Therefore, the best we can do is find individual coefficients. We now discuss methods of calculating c2n and c2n−1.

1. Leading Order Coefficient c2n

We begin with the leading order coefficient c2n. Recall that Lemma 1(ii) gives that c2n = (2n)!!. The proof of this
lemma is contained in the companion text Ref. [16], and we briefly describe that proof. However, we also provide a
second technique for understanding the result that is useful to understanding the proof of the first sub-leading order
term c2n−1.
Recall that, in order for a graph in G2

n = G2
n(0, 0, 0) to have 2n connected components, it must possess only type-1

and type-4 black edges. The two vertices connected by each horizontal black edge must also be connected by a red
edge to form a 2-vertex connected component. The remaining vertical edges from the type-1 sets of black edges are
then paired off (i.e., connected via horizontal red edges) into 4-vertex connected components, and the same holds
for black vertical edges from type-4 sets. This leads to 2n total connected components. The original proof that the
total number of graphs satisfying these constraints is (2n)!! proceeds by reducing these graphs to ones in G1

n and
then counting them (with a weight given by the number of connected components). This is evaluated by using the
equation for the first moment in Theorem 1. See the companion piece Ref. [16] for more explicit details.

Another way to compute this coefficient is by making a combinatorial argument. As discussed, c2n contains
contributions only from graphs that possess solely type-1 and type-4 sets of black edges. Again, in order to create
the maximal number of connected components, the horizontal black edges must also be connected by red edges to
create a size-2 connected component. The remaining type-1 vertical black edges are paired off, and the type-4 vertical
black edges are similarly paired off. So, for a graph of order n, say that there are p sets of type-1 black edges and,
therefore, n− p sets of type-4 black edges. There are

(
n
p

)
sets of black edges with this type distribution. There are

then (2p − 1)!! ways to pair off the 2p vertical type-1 black edges, and (2n − 2p − 1)!! ways to pair off the 2n − 2p
vertical type-4 black edges. Therefore, summing over p ∈ {0, 1, . . . , n}, we get that

c2n =

n∑
p=0

(
n

p

)
(2p− 1)!!(2n− 2p− 1)!!. (C2)

We can massage the right-hand side a bit using the fact that (2x − 1)!! = (2x)!/(2x)!! = (2x)!/(2xx!). Expanding
out the binomial coefficient and converting all terms to single factorials yields

c2n =
n!

2n

n∑
p=0

(
2p

p

)(
2n− 2p

n− p

)
. (C3)

The summation evaluates to 4n using the convolution of the Taylor series for (1− 4x)−1/2 [29]. Therefore,

c2n = 2nn! = (2n)!!, (C4)

which, of course, matches the known result.

2. First Subleading Coefficient c2n−1

We now generalize the above combinatorial version of the c2n calculation to c2n−1. It is slightly more complicated,
as there is a bit of casework to consider, but the general idea is the same. In particular, the key idea is that because
2n is the maximal number of connected components, finding a graph with 2n−1 connected components comes down
to counting the ways that one can create a “deficit” of exactly one connected component from the maximal number.
There are nine ways to accomplish this.

First, consider starting with graphs with a maximal number of connected components, meaning, as per Ap-
pendix C 1, they have only type-1 and type-4 black edges. The connected components have either 2 vertices (red
and black edge between 2 vertices in the same row) or 4 (two vertical black edges of the same type that are paired
off via red edges). We refer to these as type-x 2-vertex and 4-vertex connected components, respectively (where x
is either 1 or 4). One can convert these graphs with maximal connected components into graphs with a deficit of
a single connected component in the following ways, all of which involve merging two connected components into a
single one:

(1): merge two type-1 2-vertex connected components;

28

(2): merge two type-4 2-vertex connected components;

(3): merge one type-1 2-vertex connected component with one type-4 4-vertex connected component;

(4): merge one type-4 2-vertex connected component with one type-1 4-vertex connected component;

(5): merge two type-1 4-vertex connected components;

(6): merge two type-4 4-vertex connected components;

(7): merge one type-1 4-vertex connected component with one type-4 4-vertex connected component.

These options are visualized (up to the symmetry of exchanging the roles of type-1 and type-4 edges) in Fig. C.1.

case (1)

case (3)

case (7)

case (5)

FIG. C.1. Possible ways of merging type-1 and type-4 vertices to create a deficit of a single connected component. Here, we
only show cases (1), (3), (5), and (7), as (2), (4), and (6) are symmetric with (1), (3), and (5) with type-1 and type-4 edges
switched.

Next, we must also consider cases with type-2 and type-3 black edges. There are two options here: either the
graph can have exactly one set of type-2 or type-3 edges, or it can have exactly two sets (it does not matter whether
it is two type-2 sets of edges, two type-3 sets of edges, or one of each). The rest of the sets of black edges must all
be of type 1 or type 4. Then, creating a deficit can be done in the following ways:

(8): connect one type-2 or type-3 edge (the edge connecting the top row to the bottom row) to one type-1 vertical
edge and one type-4 vertical edge to make a 6-vertex loop;

(9): connect two type-2 or type-3 edges (again, the top-to-bottom edges) to form a 4-vertex connected component.

These are visualized in Fig. C.2. The rest of horizontal black edges must be connected with red edges to form 2-vertex

case (8)

case (9)

FIG. C.2. Possible ways of creating a deficit of a single connected component while using type-2 and/or type-3 edges.

29

connected components, and the remaining vertical edges must be appropriately paired off in order to ensure 2n− 2
other connected components are formed.

The end result of accounting for all of these cases is a (double) sum that computes c2n−1:

c2n−1 =

n∑
p=0

(
n

p

)
×
[
2

(
p

2

)
(2p− 1)!!(2(n− p)− 1)!!︸ ︷︷ ︸

(1)

+2

(
n− p

2

)
(2p− 1)!!(2(n− p)− 1)!!︸ ︷︷ ︸

(2)

+ 2

(
p

1

)(
2(n− p)

2

)
(2p− 1)!!(2(n− p− 1)− 1)!!︸ ︷︷ ︸

(3)

+2

(
n− p

1

)(
2p

2

)
(2(p− 1)− 1)!!(2(n− p)− 1)!!︸ ︷︷ ︸

(4)

+ 6

(
2p

4

)
(2(p− 2)− 1)!!(2(n− p)− 1)!!︸ ︷︷ ︸

(5)

+6

(
2(n− p)

4

)
(2p− 1)!!(2(n− p− 2)− 1)!!︸ ︷︷ ︸

(6)

+ 2

(
2p

2

)(
2(n− p)

2

)
(2(p− 1)− 1)!!(2(n− p− 1)− 1)!!︸ ︷︷ ︸

(7)

]

+

n−1∑
p=0

2

(
n

1

)(
n− 1

p

)
(2p+ 1)(2(n− p− 1) + 1)(2p− 1)!!(2(n− p− 1)− 1)!!︸ ︷︷ ︸

(8)

+

n−2∑
p=0

4

(
n

2

)(
n− 2

p

)
(2p+ 1)!!(2(n− p− 2) + 1)!!︸ ︷︷ ︸

(9)

(C5)

The last sum should be taken to be 0 when n = 1 and the sum is empty (this is because this case of course requires at
least n = 2 to have two sets of type-2/3 edges). Each of these terms can be derived through a simple combinatorial
argument regarding which types of edges are present and how they must be connected. For each case, say that there
are p type-1 sets of black edges. This means there are n− p, n− p− 1, and n− p− 2 sets of type-4 black edges for
cases (1)-(7), case (8), and case (9), respectively (in the latter two cases, the remaining set(s) of edges are type-2
and/or type-3). Each case then comes down to deciding how to order the sets of edges, how to choose which edges
are connected together, and then pairing off the remaining edges of the same type to build the remaining 2- and
4-vertex connected components. We do not detail how to count every single case, but we discuss two examples, case
(1) and case (8). The rest should be straightforward to derive by extending these arguments.

In case (1), we merge two 2-vertex connected components of type 1. First, we have a factor of
(
n
p

)
to account for

all ways of having p type-1 sets of edges. We then must select 2 of the p horizontal black edges to merge into a single
connected component, hence the factor of

(
p
2

)
; see Fig. C.1. The additional factor of 2 comes from the two possible

ways of merging these into a single connected component. Finally, the remaining double factorial factors are the
number of ways of pairing off the vertical black edges with those of the same type. We then must sum from p = 0
to n to account for all possible black edge type distributions.

Case (8) proceeds similarly. First, we have a factor of
(
n
1

)
, or n, to choose where the type-2 or type-3 set of edges

is. The factor of 2 out front now actually accounts for whether it is type 2 or type 3. Next, we have
(
n−1
p

)
to account

for the placement of the p type-1 sets of edges. Next, there are now 2p+1 black edges that span the second and third
rows (i.e., they are black edges that arise from type-1 sets of black edges). It is 2p+ 1 because the type-2 or type-3
set of black edges contributes 1, and the p type-1 sets contribute 2p. Analogously, there are also (2(n− p− 1) + 1)
black edges spanning the first and second rows. We have to select one of each to connect to the black edge that
spans the first and third rows to make a single 6-vertex connected component. The remaining factors are again the
number of ways to pair off the remaining vertical black edges with those of the same type (horizontal black edges
must form 2-vertex connected components to reach the required number of connected components).

It is possible, but quite tedious, to simplify this double sum by looking at each individual term and then applying
a similar technique as in the evaluation of the sum for c2n. That is, for each term in the sum, we use the convolution
of various Taylor series and compare the coefficients of xn. We start with the first term

(1) →
n∑

p=0

(
n

p

)
2

(
p

2

)
(2p− 1)!!(2(n− p)− 1)!! =

n!

2n

n∑
p=0

p(p− 1)

(
2p

p

)(
2n− 2p

n− p

)
. (C6)

30

One then has through Taylor expansion that

x2 d2

dx2

1√
1− 4x

=

∞∑
n=0

(
2n

n

)
n(n− 1)xn, (C7)

which implies that

12x2 1

(1− 4x)3
=

(
x2 d2

dx2

1√
1− 4x

)
1√

1− 4x
=

∞∑
n=0

n∑
p=0

p(p− 1)

(
2p

p

)(
2n− 2p

n− p

)
xn. (C8)

Using the Online Encycopledia of Integer Sequences (OEIS), we find the three-fold convolution of powers of 4 A038845
[30] has formula (n+ 2)(n+ 1)22n−1, meaning

∞∑
n=0

12(n+ 2)(n+ 1)22n−1xn+2 = 12x2 1

(1− 4x)3
=

∞∑
n=0

n∑
p=0

p(p− 1)

(
2p

p

)(
2n− 2p

n− p

)
xn. (C9)

Therefore, comparing powers of x, we get that

n∑
p=0

p(p− 1)

(
2p

p

)(
2n− 2p

n− p

)
= 12n(n− 1)22n−5, (C10)

meaning the first term in the sum is (after some algebra)

n∑
p=0

(
n

p

)
2

(
p

2

)
(2p− 1)!!(2(n− p)− 1)!! = (2n)!!

3n(n− 1)

8
. (C11)

Note also by the symmetry between p and n− p, the contribution of the second term is the same.
We can perform similar manipulations for the other terms. In particular,

(3) →
n∑

p=0

(
n

p

)
2p

(
2n− 2p

2

)
(2p− 1)!!(2(n− p− 1)− 1)!! =

n!

2n−1

n∑
p=0

(n− p)p

(
2p

p

)(
2n− 2p

n− p

)
. (C12)

Instead of taking the Taylor expansion for the second derivative of (1 − 4x)−1/2 and convolving it with that for
(1− 4x)−1/2, we convolve the Taylor series for the first derivative with itself. That is,

4x2

(1− 4x)3
=

(
x
d

dx

1√
1− 4x

)2

=

∞∑
n=0

n∑
p=0

p(n− p)

(
2p

p

)(
2n− 2p

n− p

)
xn, (C13)

which, using the same result as for (1) (just with a difference of a factor of 3), yields

n∑
p=0

p(n− p)

(
2p

p

)(
2n− 2p

n− p

)
= 4n(n− 1)22n−5. (C14)

This means that the third term yields a contribution of

(3) → n!

2n−1
4n(n− 1)22n−5 = (2n)!!

2n(n− 1)

8
. (C15)

Again, by the symmetry between n and n− p, the contribution from the fourth term is the same.
Next:

(5) →
n∑

p=0

(
n

p

)
6

(
2p

4

)
(2(p− 2)− 1)!!(2(n− p)− 1)!! =

n!

2n

n∑
p=0

p(p− 1)

(
2p

p

)(
2n− 2p

n− p

)
= (2n)!!

3n(n− 1)

8
(C16)

because this is the exact same as (1). Again, by symmetry, (6) has the same contribution.
We also have that

(7) →
n∑

p=0

(
n

p

)
2

(
2p

2

)(
2(n− p)

2

)
(2(p− 1)− 1)!!(2(n− p− 1)− 1)!! =

n!

2n−1

n∑
p=0

p(n− p)

(
2p

p

)(
2n− 2p

n− p

)
= (2n)!!

2n(n− 1)

8
,

(C17)

https://oeis.org/A038845

31

which follows because this term happens to be the same as (3).
We now move on to the final two cases. Again, similar manipulations yield that

(8) →
n−1∑
p=0

2

(
n

1

)(
n− 1

p

)
(2p+ 1)(2(n− p− 1) + 1)(2p− 1)!!(2(n− p− 1)− 1)!!

=
n!

2n−1

n∑
p=0

(2p+ 1)(n− p)

(
2p

p

)(
2n− 2p

n− p

)

=
n!

2n−1
2

n∑
p=0

p(n− p)

(
2p

p

)(
2n− 2p

n− p

)
+

n!

2n−1

n∑
p=0

(n− p)

(
2p

p

)(
2n− 2p

n− p

)
.

(C18)

We have expanded the upper limit to p = n because the factor of n − p sets this additional contribution to 0. The
first term in the last equation is simply twice the contribution of (3), which is (2n)!!4n(n − 1)/8. The second term
requires yet another manipulation of Taylor series. By very similar arguments to the above, we have that

x
d

dx

1√
1− 4x

=

∞∑
n=0

(
2n

n

)
nxn, (C19)

which implies that

2x

(1− 4x)2
=

(
x
d

dx

1√
1− 4x

)
1√

1− 4x
=

∞∑
n=0

n∑
p=0

p

(
2p

p

)(
2n− 2p

n− p

)
xn, (C20)

which is the same as the sum we are interested in (up to the symmetry of replacing n − p with p). Using OEIS
sequence A002697 [30], that is, the convolution of powers of 4, we find that

2x

(1− 4x)2
=

∞∑
n=0

2(n+ 1)4nxn+1, (C21)

which means that, comparing powers of xn,

n!

2n−1

n∑
p=0

(n− p)

(
2p

p

)(
2n− 2p

n− p

)
=

n!

2n−1
2n4n−1 = n(2n)!!. (C22)

Finally, then

(8) → (2n)!!
4n(n− 1)

8
+ (2n)!!n =

4n(n+ 1)

8
. (C23)

Last, we get that

(9) →
n−2∑
p=0

4

(
n

2

)(
n− 2

p

)
(2p+ 1)!!(2(n− p− 2) + 1)!!

=
n!

2n−1

n−2∑
p=0

(
2p+ 2

p+ 1

)(
2n− 2p− 2

n− p− 1

)
(p+ 1)(n− p− 1)

=
n!

2n−1

n∑
x=0

(
2x

x

)(
2n− 2x

n− x

)
(x)(n− x),

(C24)

where we have set x = p+ 1 and then expanded the limits of summation to include x = 0 and x = n (because these
terms contribute 0). Therefore, this contribution is the same as (3), (4), and (7), which is (2n)!!2n(n− 1)/8.

Therefore, in total, we have that

c2n−1

(2n)!!
= 4

3n(n− 1)

8
+ 4

2n(n− 1)

8
+

4n(n− 1)

8
+ n = (3n− 2)n. (C25)

Therefore,

c2n−1 = (2n)!!(3n− 2)n. (C26)

https://oeis.org/A002697

32

Numerically evaluating the sums yields the same value up to n = 40, and this also matches the value of c2n−1

computed via the recursion. We note that (3n − 2)n are the so-called octagonal numbers, which are OEIS entry
A000567 [30]. However, we are not sure whether there is a deeper connection between these numbers and the graph
theoretic problem at the core of this calculation. Additionally, while it is nice that we have been able to find an exact
formula for a second coefficient, this calculation does not seem scalable, meaning other methods are likely needed to
try to find the full expansion of the second moment.

Appendix D: Alternative method for computing coefficients ci

In this section, we present an alternative method for computing coefficients ci in

M2(k, n) = (2n− 1)!!

2n∑
i=1

cik
i. (D1)

Using this method, we obtain a useful expression for c1. We also outline how this method can be used to set up
an alternative recursive code for computing the coefficients ci for all i. While we have not implemented this code,
there is a possibility it is more efficient than the recursive code discussed in the main text. It is also possible that
this new method may yield other useful analytical results about ci, including their asymptotic behavior.
We start by recalling Eq. (19):

M2(k, n) = (2n− 1)!!
∑

G∈G2
n

kC(G), (D2)

where the sum goes over all graphs possessing the allowed assignments of black and red edges. The new method relies
on the following key simplifying observation: for a given fixed assignment of black edges, the contribution to M2(k, n)
(summed over all allowed red edge assignments) depends only on e = (e11, e12, e13, e23, e33), where eij is the number
of black edges that connect row i to row j. In particular, the answer does not depend on what columns the black
edges are connecting. The proof of this key observation is simple: for a fixed set of black edges, the contribution to
M2(k, n) is summed over all possible red perfect matchings in each of the three rows. This means that we can swap
any two vertices in a given row (while pulling the ends of the black edges to the new destinations) without changing
the answer. This completes the proof.
Let p1 be the number of type-1 sets of black edges, p4 be the number of type-4 sets of black edges, and p be

the combined number of type-2 and type-3 sets of black edges (type-2 and type-3 sets are equivalent as far as their
contributions to eij). Then e11 = p1, e33 = p4, e12 = p+ 2p4, e23 = p+ 2p1, and e13 = p. We then write

M2(k, n) =

n∑
p1=0

n−p1∑
p4=0

(
n

p1

)(
n− p1
p4

)
2pg(e), (D3)

where p = n− p1 − p4. The combinatorial factors come from choosing p1 sets of type-1 black edges out of n possible
locations, then p4 sets of type-4 black edges from n− p1 possible locations, and finally multiplying by a factor of 2
for each choice of whether a given contribution to p is type-2 or type-3. Additionally,

g(e) =

2n∑
i=1

di(e)k
i, (D4)

where di(e) is the number of ways (using the allowed red-edge assignments) to make i loops given the black edges
specified by e.

The coefficients di(e) can then be computed with the help of the visualization shown in Fig. D.1(a). The three
black dots labeled 1, 2, and 3 represent the three rows. The numbers ejk on the five edges (including the two loops)
show how many black edges connect row j to row k. Roughly speaking, the coefficient di(e) is the number of ways
to connect all the black edges specified by e into exactly i loops. The red edges are used to connect the black edges
to each other and are taken into account automatically, which is one of the key advantages of this approach (slightly
more specifically, for any two black edges that share a row, it is possible to connect them with a red edge between
the vertices in that shared row). Each way of joining the edges e into loops also comes with a combinatorial factor
that takes into account the fact that all edges are distinguishable and the fact that edges that stay in the same row
can each be traversed in one of two directions.

The coefficients g(e) can be computed using a recursive procedure. Instead of doing a recursion on n (which is
what we do in the main text, with details presented in Appendix B), we perform the recursion on the number of

https://oeis.org/A000567

33

<latexit sha1_base64="INPa5pUOh88kpzgsSQ4pFXh5rvc=">AAAC4XicZVLJbtswEKXVJam7Je2xF6JGgBQwDCnodgzaS48pUCcBbCMY0aOYMBeBHAVVBX1AbkEPvfTQ/Em+o39TyvKhsgcg+PTmkZo3wzRX0lMc/+1F9+4/eLiz+6j/+MnTZ8/39l+cels4gWNhlXXnKXhU0uCYJCk8zx2CThWepcvPTf7sCp2X1nyjMseZhksjMymAAjWdEn4np6vD9E19sTeIR/Eq+DZI1mDA1nFysd+7m86tKDQaEgq8nyRxTrMKHEmhsO5PC485iCVc4iRAAxr9rFoVXfODwMx5Zl1YhviK/f9EpYEWZK3yQ9Delzpt9oYc8gBooYeeNLjSzYfho1WmDpZIdb9zUfCfBrs60Ae8uYB7KrKso0l1p9yqXDTCmnc8SNO0ORgM1eRkqWuxEmAEqi7nUHn5Y0MIzkG5QbUWQ1ua//rNXFvMdm5SUPZxVkmTF4RGtF3NCsXJ8mbcfC4dClJlACCcDIPhYgEOBIVH0Q8jTzYHvA1Oj0bJ+9G7r28Hx5/Ww99lr9hrdsgS9oEdsy/shI2ZYDn7xf6w20hE19FN9LOVRr31mZesE9Hvf6FE7Z8=</latexit>

(b)
<latexit sha1_base64="Y0UCh8bTt2ue7ApFB490xEPauEY=">AAAC4XicZVLJbtswEKXVJam7Je2xF6JGgBQwDCnodgzaS48pUCcBbCMY0aOYMBeBHAVVBX1AbkEPvfTQ/Em+o39TyvKhsgcg+PTmkZo3wzRX0lMc/+1F9+4/eLiz+6j/+MnTZ8/39l+cels4gWNhlXXnKXhU0uCYJCk8zx2CThWepcvPTf7sCp2X1nyjMseZhksjMymAAjWdEn4np6tDeFNf7A3iUbwKvg2SNRiwdZxc7PfupnMrCo2GhALvJ0mc06wCR1IorPvTwmMOYgmXOAnQgEY/q1ZF1/wgMHOeWReWIb5i/z9RaaAFWav8ELT3pU6bvSGHPABa6KEnDa5082H4aJWpgyVS3e9cFPynwa4O9AFvLuCeiizraFLdKbcqF42w5h0P0jRtDgZDNTlZ6lqsBBiBqss5VF7+2BCCc1BuUK3F0Jbmv34z1xaznZsUlH2cVdLkBaERbVezQnGyvBk3n0uHglQZAAgnw2C4WIADQeFR9MPIk80Bb4PTo1HyfvTu69vB8af18HfZK/aaHbKEfWDH7As7YWMmWM5+sT/sNhLRdXQT/WylUW995iXrRPT7H57Q7Z4=</latexit>

(a)
<latexit sha1_base64="Taa0NHCVe1R6JTZDb6dMXludQAU=">AAAC23icZVJLj9MwEHbDY5fy2oUjF4tqJQ5VlaDlcVzBheMi0e5K3aiauJOtqR+RPVkpRDlxQxy4cIA/w+/g3+A0PZB2JMtfvvnszDfjrFDSUxz/HUS3bt+5e3B4b3j/wcNHj4+On8y8LZ3AqbDKussMPCppcEqSFF4WDkFnCi+y9fs2f3GDzktrPlFVYKrh2shcCqBAzXBRJ0mzOBrFk3gTfB8kWzBi2zhfHA/+XC2tKDUaEgq8nydxQWkNjqRQ2AyvSo8FiDVc4zxAAxp9Wm/KbfhJYJY8ty4sQ3zD/n+i1kArslb5MWjvK521e0uOeQC00mNPGlzlluPw0SkzB2ukZti7KDjPglEd6BPeXsA9lXne02S6V25drVphw3sepGkbHAyGagqy1LdYCzACVZ9zqLz8siME56DaoTqLoS3tf/1uritmPzcvKX+b1tIUJaERXVfzUnGyvB00X0qHglQVAAgnw2C4WIEDQeE5DMPIk90B74PZy0nyevLq4+no7N12+IfsGXvOXrCEvWFn7AM7Z1Mm2Gf2g/1iv6M0+hp9i7530miwPfOU9SL6+Q9rMerW</latexit>e11

<latexit sha1_base64="1DJRUzIAvruWE08WCovNIHyvTs4=">AAAC23icZVJLj9MwEHbDaymvXThysahW4lBVCbs8jiu4cFwk2l2pG1UTd7I19SOyJ0ghyokb4sCFA/wZfgf/BqfpgbQjWf7yzWdnvhlnhZKe4vjvILpx89btOwd3h/fuP3j46PDo8czb0gmcCqusu8zAo5IGpyRJ4WXhEHSm8CJbv2vzF5/ReWnNR6oKTDVcG5lLARSoGS7qk5NmcTiKJ/Em+D5ItmDEtnG+OBr8uVpaUWo0JBR4P0/igtIaHEmhsBlelR4LEGu4xnmABjT6tN6U2/DjwCx5bl1YhviG/f9ErYFWZK3yY9DeVzpr95Yc8wBopceeNLjKLcfho1NmDtZIzbB3UXCeBaM60Me8vYB7KvO8p8l0r9y6WrXChvc8SNM2OBgM1RRkqW+xFmAEqj7nUHn5ZUcIzkG1Q3UWQ1va//rdXFfMfm5eUv4mraUpSkIjuq7mpeJkeTtovpQOBakqABBOhsFwsQIHgsJzGIaRJ7sD3gezF5Pk1eTlh9PR2dvt8A/YU/aMPWcJe83O2Ht2zqZMsE/sB/vFfkdp9DX6Fn3vpNFge+YJ60X08x90/+ra</latexit>e33

<latexit sha1_base64="9ZOkfHPrCkzjBopERFpE74tDnDA=">AAAC23icZVJLj9MwEHbDaymvXThysahW4lBVCe/jir1wXCTaXakbVRN3sjX1I7InSCHKiRvisBcO8Gf4HfwbnKYH0o5k+cs3n535ZpwVSnqK47+D6MbNW7fvHNwd3rv/4OGjw6PHM29LJ3AqrLLuIgOPShqckiSFF4VD0JnC82x92ubPv6Dz0ppPVBWYargyMpcCKFAzXNTJy2ZxOIon8Sb4Pki2YMS2cbY4Gvy5XFpRajQkFHg/T+KC0hocSaGwGV6WHgsQa7jCeYAGNPq03pTb8OPALHluXViG+Ib9/0StgVZkrfJj0N5XOmv3lhzzAGilx540uMotx+GjU2YO1kjNsHdRcJ4FozrQx7y9gHsq87ynyXSv3LpatcKG9zxI0zY4GAzVFGSpb7EWYASqPudQefl1RwjOQbVDdRZDW9r/+t1cV8x+bl5S/i6tpSlKQiO6rual4mR5O2i+lA4FqSoAEE6GwXCxAgeCwnMYhpEnuwPeB7MXk+TN5PXHV6OT99vhH7Cn7Bl7zhL2lp2wD+yMTZlgn9k1+8V+R2n0Lfoe/eik0WB75gnrRfTzH3AX6tg=</latexit>e13

<latexit sha1_base64="bcS0o06GecQVzRHGwLKAM7lU/So=">AAAC23icZVJLj9MwEHbDaymvXThysahW4lBVyYrHHldw4bhItLtSN6om7mRr6kdkT1YKUU7cEAcuHODP8Dv4NzhND6QdyfKXbz478804K5T0FMd/B9Gt23fu3ju4P3zw8NHjJ4dHT2felk7gVFhl3WUGHpU0OCVJCi8Lh6AzhRfZ+n2bv7hB56U1n6gqMNVwbWQuBVCgZriok5NmcTiKJ/Em+D5ItmDEtnG+OBr8uVpaUWo0JBR4P0/igtIaHEmhsBlelR4LEGu4xnmABjT6tN6U2/DjwCx5bl1YhviG/f9ErYFWZK3yY9DeVzpr95Yc8wBopceeNLjKLcfho1NmDtZIzbB3UXCeBaM60Me8vYB7KvO8p8l0r9y6WrXChvc8SNM2OBgM1RRkqW+xFmAEqj7nUHn5ZUcIzkG1Q3UWQ1va//rdXFfMfm5eUn6a1tIUJaERXVfzUnGyvB00X0qHglQVAAgnw2C4WIEDQeE5DMPIk90B74PZySR5M3n98dXo7N12+AfsOXvBXrKEvWVn7AM7Z1Mm2Gf2g/1iv6M0+hp9i7530miwPfOM9SL6+Q9tpOrX</latexit>e12

<latexit sha1_base64="0i3Am1hrHIIL3RFdbmGtgMkcuA0=">AAAC23icZVJLj9MwEHbDaymvXThysahW4lBVyS6v4wouHBeJdlfqRtXEnWxN/YjsCVKIcuKGOHDhAH+G38G/wWl6IO1Ilr9889mZb8ZZoaSnOP47iG7cvHX7zsHd4b37Dx4+Ojx6PPO2dAKnwirrLjPwqKTBKUlSeFk4BJ0pvMjW79r8xWd0XlrzkaoCUw3XRuZSAAVqhov65LRZHI7iSbwJvg+SLRixbZwvjgZ/rpZWlBoNCQXez5O4oLQGR1IobIZXpccCxBqucR6gAY0+rTflNvw4MEueWxeWIb5h/z9Ra6AVWav8GLT3lc7avSXHPABa6bEnDa5yy3H46JSZgzVSM+xdFJxnwagO9DFvL+CeyjzvaTLdK7euVq2w4T0P0rQNDgZDNQVZ6lusBRiBqs85VF5+2RGCc1DtUJ3F0Jb2v3431xWzn5uXlL9Ja2mKktCIrqt5qThZ3g6aL6VDQaoKAISTYTBcrMCBoPAchmHkye6A98HsZJK8mrz88GJ09nY7/AP2lD1jz1nCXrMz9p6dsykT7BP7wX6x31EafY2+Rd87aTTYnnnCehH9/Adyi+rZ</latexit>e23

<latexit sha1_base64="5LKUaJrt6HLb6LUFBJeIoSgnCBg=">AAAC1nicZVJNT9tAEN24tKXpF5QjlxURUg9RZFf044jg0iNIBCKFCI03Y7LKfli740quld4qDlw40N/D7+i/6TrOoU5GWu3zm7freTOb5kp6iuO/nejZ1vMXL7dfdV+/efvu/c7uh0tvCydwKKyybpSCRyUNDkmSwlHuEHSq8Cqdn9b5qx/ovLTmgsocJxpujcykAArUeXKz04sH8TL4JkhWoMdWcXaz23m6nlpRaDQkFHg/TuKcJhU4kkLhontdeMxBzOEWxwEa0Ogn1bLSBT8MzJRn1oVliC/Z/09UGmhG1irfB+19qdN6r8k+D4Bmuu9JgyvdtB8+GmXqYI606LYuCqbT4FEH+pDXF3BPRZa1NKlulVuVs1q44C0P0tS9DQZDNTlZalusBBiBqs05VF7+XBOCc1CuUY3F0Jb6v3491xSzmRsXlH2bVNLkBaERTVezQnGyvJ4xn0qHglQZAAgnw2C4mIEDQeEldMPIk/UBb4LLT4Pky+Dz+VHv+GQ1/G22zw7YR5awr+yYfWdnbMgEQ3bPHtmfaBT9in5Hd4006qzO7LFWRA//APKm6Lc=</latexit>

1
<latexit sha1_base64="5LKUaJrt6HLb6LUFBJeIoSgnCBg=">AAAC1nicZVJNT9tAEN24tKXpF5QjlxURUg9RZFf044jg0iNIBCKFCI03Y7LKfli740quld4qDlw40N/D7+i/6TrOoU5GWu3zm7freTOb5kp6iuO/nejZ1vMXL7dfdV+/efvu/c7uh0tvCydwKKyybpSCRyUNDkmSwlHuEHSq8Cqdn9b5qx/ovLTmgsocJxpujcykAArUeXKz04sH8TL4JkhWoMdWcXaz23m6nlpRaDQkFHg/TuKcJhU4kkLhontdeMxBzOEWxwEa0Ogn1bLSBT8MzJRn1oVliC/Z/09UGmhG1irfB+19qdN6r8k+D4Bmuu9JgyvdtB8+GmXqYI606LYuCqbT4FEH+pDXF3BPRZa1NKlulVuVs1q44C0P0tS9DQZDNTlZalusBBiBqs05VF7+XBOCc1CuUY3F0Jb6v3491xSzmRsXlH2bVNLkBaERTVezQnGyvJ4xn0qHglQZAAgnw2C4mIEDQeEldMPIk/UBb4LLT4Pky+Dz+VHv+GQ1/G22zw7YR5awr+yYfWdnbMgEQ3bPHtmfaBT9in5Hd4006qzO7LFWRA//APKm6Lc=</latexit>

1

<latexit sha1_base64="21AHyoIKknh6nngjweKMKcaS5MM=">AAAC1nicZVJNb9NAEN2YFkpKaQtHLqtGlThEkV1B4VjBhWMrNW2kNKrGm3Gzyn5Yu2MkY4Ub4sCFA/09/R38m67jHOpkpNU+v3m7njezaa6kpzj+34mebW0/f7Hzsrv7au/1/sHhmytvCydwKKyybpSCRyUNDkmSwlHuEHSq8Dqdf63z19/ReWnNJZU5TjTcGZlJARSoi5Pbg148iJfBN0GyAj22ivPbw87DzdSKQqMhocD7cRLnNKnAkRQKF92bwmMOYg53OA7QgEY/qZaVLvhxYKY8sy4sQ3zJPj1RaaAZWat8H7T3pU7rvSb7PACa6b4nDa500374aJSpgznSotu6KJhOg0cd6GNeX8A9FVnW0qS6VW5Vzmrhgrc8SFP3NhgM1eRkqW2xEmAEqjbnUHn5Y00IzkG5RjUWQ1vq//r1XFPMZm5cUPZ5UkmTF4RGNF3NCsXJ8nrGfCodClJlACCcDIPhYgYOBIWX0A0jT9YHvAmuTgbJ6eDjxYfe2ZfV8HfYO3bE3rOEfWJn7Bs7Z0MmGLI/7B+7j0bRz+hX9LuRRp3VmbesFdHfR/UY6Lg=</latexit>

2
<latexit sha1_base64="21AHyoIKknh6nngjweKMKcaS5MM=">AAAC1nicZVJNb9NAEN2YFkpKaQtHLqtGlThEkV1B4VjBhWMrNW2kNKrGm3Gzyn5Yu2MkY4Ub4sCFA/09/R38m67jHOpkpNU+v3m7njezaa6kpzj+34mebW0/f7Hzsrv7au/1/sHhmytvCydwKKyybpSCRyUNDkmSwlHuEHSq8Dqdf63z19/ReWnNJZU5TjTcGZlJARSoi5Pbg148iJfBN0GyAj22ivPbw87DzdSKQqMhocD7cRLnNKnAkRQKF92bwmMOYg53OA7QgEY/qZaVLvhxYKY8sy4sQ3zJPj1RaaAZWat8H7T3pU7rvSb7PACa6b4nDa500374aJSpgznSotu6KJhOg0cd6GNeX8A9FVnW0qS6VW5Vzmrhgrc8SFP3NhgM1eRkqW2xEmAEqjbnUHn5Y00IzkG5RjUWQ1vq//r1XFPMZm5cUPZ5UkmTF4RGNF3NCsXJ8nrGfCodClJlACCcDIPhYgYOBIWX0A0jT9YHvAmuTgbJ6eDjxYfe2ZfV8HfYO3bE3rOEfWJn7Bs7Z0MmGLI/7B+7j0bRz+hX9LuRRp3VmbesFdHfR/UY6Lg=</latexit>

2

<latexit sha1_base64="9O5YUYjD/eaQ7/D4rD2R6fFFopo=">AAAC1nicZVLJbtswEKXVLXW3pD32QtQI0INhSF1zDNJLjglQJwYcIxjRo5gwF4EcFVAE5xbkkEsOzff0O/I3oSwfKnsAgk9vHql5M0xzJT3F8UMnevL02fMXWy+7r16/eftue+f9ibeFEzgUVlk3SsGjkgaHJEnhKHcIOlV4ms5/1fnTP+i8tOY3lTlONFwYmUkBFKjjr+fbvXgQL4NvgmQFemwVR+c7nX9nUysKjYaEAu/HSZzTpAJHUihcdM8KjzmIOVzgOEADGv2kWla64LuBmfLMurAM8SX7/4lKA83IWuX7oL0vdVrvNdnnAdBM9z1pcKWb9sNHo0wdzJEW3dZFwXQaPOpA7/L6Au6pyLKWJtWtcqtyVgsXvOVBmrq3wWCoJidLbYuVACNQtTmHysvLNSE4B+Ua1VgMban/69dzTTGbuXFB2d6kkiYvCI1oupoVipPl9Yz5VDoUpMoAQDgZBsPFDBwICi+hG0aerA94E5x8GSQ/Bt+Pv/X2D1bD32If2Sf2mSXsJ9tnh+yIDZlgyG7ZX3YfjaKr6Dq6aaRRZ3XmA2tFdPcI94rouQ==</latexit>

3
<latexit sha1_base64="9O5YUYjD/eaQ7/D4rD2R6fFFopo=">AAAC1nicZVLJbtswEKXVLXW3pD32QtQI0INhSF1zDNJLjglQJwYcIxjRo5gwF4EcFVAE5xbkkEsOzff0O/I3oSwfKnsAgk9vHql5M0xzJT3F8UMnevL02fMXWy+7r16/eftue+f9ibeFEzgUVlk3SsGjkgaHJEnhKHcIOlV4ms5/1fnTP+i8tOY3lTlONFwYmUkBFKjjr+fbvXgQL4NvgmQFemwVR+c7nX9nUysKjYaEAu/HSZzTpAJHUihcdM8KjzmIOVzgOEADGv2kWla64LuBmfLMurAM8SX7/4lKA83IWuX7oL0vdVrvNdnnAdBM9z1pcKWb9sNHo0wdzJEW3dZFwXQaPOpA7/L6Au6pyLKWJtWtcqtyVgsXvOVBmrq3wWCoJidLbYuVACNQtTmHysvLNSE4B+Ua1VgMban/69dzTTGbuXFB2d6kkiYvCI1oupoVipPl9Yz5VDoUpMoAQDgZBsPFDBwICi+hG0aerA94E5x8GSQ/Bt+Pv/X2D1bD32If2Sf2mSXsJ9tnh+yIDZlgyG7ZX3YfjaKr6Dq6aaRRZ3XmA2tFdPcI94rouQ==</latexit>

3

<latexit sha1_base64="R5icAQDhrsDKkczFf2sso4DSIB4=">AAAC2HicZVJNb9NAEN2YAiV8tXDksiKqxCGKbFQ+jhVceixq01ZNo2i8GSer7Ie1O0YYKxI3xKEXDvBz+B39N13HOeBkpNU+v3m7njezaa6kpzi+7UT3du4/eLj7qPv4ydNnz/f2X5x7WziBQ2GVdZcpeFTS4JAkKbzMHYJOFV6ki891/uIrOi+tOaMyx7GGmZGZFECBOv02SSZ7vXgQr4Jvg2QNemwdJ5P9zr/rqRWFRkNCgfejJM5pXIEjKRQuu9eFxxzEAmY4CtCARj+uVrUu+UFgpjyzLixDfMX+f6LSQHOyVvk+aO9LndZ7TfZ5ADTXfU8aXOmm/fDRKFMHC6Rlt3VRsJ0GlzrQB7y+gHsqsqylSXWr3Kqc18Ilb3mQpu5uMBiqyclS22IlwAhUbc6h8vL7hhCcg3KDaiyGttT/9Zu5ppjt3Kig7OO4kiYvCI1oupoVipPl9ZT5VDoUpMoAQDgZBsPFHBwICm+hG0aebA54G5y/HSTvB+++HPaOPq2Hv8tesdfsDUvYB3bEjtkJGzLBZuyG/WF/o6voR/Qz+tVIo876zEvWiuj3HU2G6aI=</latexit>x1

<latexit sha1_base64="gDF/pIWd5kkOXKZExNZ9lt0YHUs=">AAAC2HicZVJNb9NAEN2YFkpaoIUjl1WjSj1EkY346LGCC8ciSFs1jaLxZpyssh/W7riSsSJxQxy4cICfw+/g37COc6iTkVb7/Obtet7MprmSnuL4Xyd6sLP78NHe4+7+wZOnzw6Pnl96WziBQ2GVddcpeFTS4JAkKbzOHYJOFV6liw91/uoOnZfWfKEyx7GGmZGZFECB+lxOkslhLx7Eq+DbIFmDHlvHxeSo8/d2akWh0ZBQ4P0oiXMaV+BICoXL7m3hMQexgBmOAjSg0Y+rVa1LfhKYKc+sC8sQX7H3T1QaaE7WKt8H7X2p03qvyT4PgOa670mDK920Hz4aZepggbTsti4KttPgUgf6hNcXcE9FlrU0qW6VW5XzWrjkLQ/S1N0NBkM1OVlqW6wEGIGqzTlUXn7dEIJzUG5QjcXQlvq/fjPXFLOdGxWUnY0rafKC0Iimq1mhOFleT5lPpUNBqgwAhJNhMFzMwYGg8Ba6YeTJ5oC3weWrQfJ28ObT6975+/Xw99hLdsxOWcLesXP2kV2wIRNsxn6y3+xPdBN9i75HPxpp1FmfecFaEf36D0/66aM=</latexit>y1

<latexit sha1_base64="dufqYLgeEIHzlj/VlvLBD8oLuFk=">AAAC2HicZVJNb9NAEN2YAiV8tIUjlxVRJQ5RZKN+Haty4VgEaaumUTTejJNV9sPaHSO5ViRuiAMXDvBz+B38G9ZxDjgZabXPb96u581smivpKY7/dqIHOw8fPd590n367PmLvf2Dl1feFk7gUFhl3U0KHpU0OCRJCm9yh6BThdfp4n2dv/6CzktrPlOZ41jDzMhMCqBAfbqfJJP9XjyIV8G3QbIGPbaOy8lB58/d1IpCoyGhwPtREuc0rsCRFAqX3bvCYw5iATMcBWhAox9Xq1qX/DAwU55ZF5YhvmL/P1FpoDlZq3wftPelTuu9Jvs8AJrrvicNrnTTfvholKmDBdKy27oo2E6DSx3oQ15fwD0VWdbSpLpVblXOa+GStzxIU3c3GAzV5GSpbbESYASqNudQeXm/IQTnoNygGouhLfV//WauKWY7NyooOxtX0uQFoRFNV7NCcbK8njKfSoeCVBkACCfDYLiYgwNB4S10w8iTzQFvg6t3g+RkcPzxqHd+sR7+LnvN3rC3LGGn7Jx9YJdsyASbsR/sF/sd3UZfo2/R90YaddZnXrFWRD//AVJu6aQ=</latexit>z1

<latexit sha1_base64="1IBBKdIvKSJaCipmLJwUD2+pZJQ=">AAAC2HicZVJNb9NAEN2YAm3KRwtHLqtGlThEkV3xdazgwrGIpq2aRtF4M05W2Q9rd4wwViRuiAMXDvBz+B38m67jHOpkpNU+v3m7njezaa6kpzj+34nu7dx/8HB3r7v/6PGTpweHzy68LZzAobDKuqsUPCppcEiSFF7lDkGnCi/TxYc6f/kFnZfWnFOZ41jDzMhMCqBAff46OZkc9OJBvAq+DZI16LF1nE0OO/9uplYUGg0JBd6PkjincQWOpFC47N4UHnMQC5jhKEADGv24WtW65MeBmfLMurAM8RV790SlgeZkrfJ90N6XOq33muzzAGiu+540uNJN++GjUaYOFkjLbuuiYDsNLnWgj3l9AfdUZFlLk+pWuVU5r4VL3vIgTd3dYDBUk5OltsVKgBGo2pxD5eW3DSE4B+UG1VgMban/6zdzTTHbuVFB2btxJU1eEBrRdDUrFCfL6ynzqXQoSJUBgHAyDIaLOTgQFN5CN4w82RzwNrg4GSRvBq8/veqdvl8Pf5e9YEfsJUvYW3bKPrIzNmSCzdgv9of9ja6j79GP6GcjjTrrM89ZK6Lft0/46aM=</latexit>x2

<latexit sha1_base64="L8PAI5nRa5Dlc69+8ik6z/Tsk24=">AAAC2HicZVLJbtswEKXVLXW6JO2xF6JGgB4MQwrS5Ri0lxxTJE6COIYxokc2YS4COSqgCgZ6K3roJYf2c/od/ZtQlg+RPQDBpzeP1LwZprmSnuL4fyd68PDR4yc7T7u7z56/eLm3/+rC28IJHAqrrLtKwaOSBockSeFV7hB0qvAyXXyp85ff0HlpzTmVOY41zIzMpAAK1Fk5OZzs9eJBvAq+DZI16LF1nE72O/9uplYUGg0JBd6PkjincQWOpFC47N4UHnMQC5jhKEADGv24WtW65AeBmfLMurAM8RV7/0SlgeZkrfJ90N6XOq33muzzAGiu+540uNJN++GjUaYOFkjLbuuiYDsNLnWgD3h9AfdUZFlLk+pWuVU5r4VL3vIgTd3dYDBUk5OltsVKgBGo2pxD5eX3DSE4B+UG1VgMban/6zdzTTHbuVFB2adxJU1eEBrRdDUrFCfL6ynzqXQoSJUBgHAyDIaLOTgQFN5CN4w82RzwNrg4HCQfBu+/HvWOP6+Hv8PesLfsHUvYR3bMTtgpGzLBZuw3+8P+RtfRj+hn9KuRRp31mdesFdHtHVJs6aQ=</latexit>y2

<latexit sha1_base64="Ggz5aT/PUa0FqSNu94fX9GOYtEo=">AAAC2HicZVJNb9NAEN0YCiWl0MKRy4qoEocosiu+jhVceiwqaaumUTTejJNV9sPaHSO5ViRuiAOXHuDn8Dv4N13HOeBkpNU+v3m7njezaa6kpzj+14kePNx59Hj3SXfv6f6z5weHLy68LZzAobDKuqsUPCppcEiSFF7lDkGnCi/Txec6f/kNnZfWfKUyx7GGmZGZFECBOr+dHE8OevEgXgXfBska9Ng6ziaHnb83UysKjYaEAu9HSZzTuAJHUihcdm8KjzmIBcxwFKABjX5crWpd8qPATHlmXViG+Ir9/0SlgeZkrfJ90N6XOq33muzzAGiu+540uNJN++GjUaYOFkjLbuuiYDsNLnWgj3h9AfdUZFlLk+pWuVU5r4VL3vIgTd3dYDBUk5OltsVKgBGo2pxD5eXthhCcg3KDaiyGttT/9Zu5ppjt3Kig7OO4kiYvCI1oupoVipPl9ZT5VDoUpMoAQDgZBsPFHBwICm+hG0aebA54G1wcD5L3g3df3vZOPq2Hv8tesdfsDUvYB3bCTtkZGzLBZuwX+83+RNfR9+hH9LORRp31mZesFdHdPVTg6aU=</latexit>z2

<latexit sha1_base64="oeQ9+/FlK+BWQ+d9pCVjswGlEjQ=">AAAC4XicZVLJbtswEKXVJam7Je2xF6JGgBQwDCnodgzaS48pUCcBbCMY0aOYMBeBHAVVBX1AbkEPvfTQ/Em+o39TyvKhsgcg+PTmkZo3wzRX0lMc/+1F9+4/eLiz+6j/+MnTZ8/39l+cels4gWNhlXXnKXhU0uCYJCk8zx2CThWepcvPTf7sCp2X1nyjMseZhksjMymAAjWdEn4np6tD8aa+2BvEo3gVfBskazBg6zi52O/dTedWFBoNCQXeT5I4p1kFjqRQWPenhcccxBIucRKgAY1+Vq2KrvlBYOY8sy4sQ3zF/n+i0kALslb5IWjvS502e0MOeQC00ENPGlzp5sPw0SpTB0ukut+5KPhPg10d6APeXMA9FVnW0aS6U25VLhphzTsepGnaHAyGanKy1LVYCTACVZdzqLz8sSEE56DcoFqLoS3Nf/1mri1mOzcpKPs4q6TJC0Ij2q5mheJkeTNuPpcOBakyABBOhsFwsQAHgsKj6IeRJ5sD3ganR6Pk/ejd17eD40/r4e+yV+w1O2QJ+8CO2Rd2wsZMsJz9Yn/YbSSi6+gm+tlKo976zEvWiej3P6O47aA=</latexit>

(c)

<latexit sha1_base64="5LKUaJrt6HLb6LUFBJeIoSgnCBg=">AAAC1nicZVJNT9tAEN24tKXpF5QjlxURUg9RZFf044jg0iNIBCKFCI03Y7LKfli740quld4qDlw40N/D7+i/6TrOoU5GWu3zm7freTOb5kp6iuO/nejZ1vMXL7dfdV+/efvu/c7uh0tvCydwKKyybpSCRyUNDkmSwlHuEHSq8Cqdn9b5qx/ovLTmgsocJxpujcykAArUeXKz04sH8TL4JkhWoMdWcXaz23m6nlpRaDQkFHg/TuKcJhU4kkLhontdeMxBzOEWxwEa0Ogn1bLSBT8MzJRn1oVliC/Z/09UGmhG1irfB+19qdN6r8k+D4Bmuu9JgyvdtB8+GmXqYI606LYuCqbT4FEH+pDXF3BPRZa1NKlulVuVs1q44C0P0tS9DQZDNTlZalusBBiBqs05VF7+XBOCc1CuUY3F0Jb6v3491xSzmRsXlH2bVNLkBaERTVezQnGyvJ4xn0qHglQZAAgnw2C4mIEDQeEldMPIk/UBb4LLT4Pky+Dz+VHv+GQ1/G22zw7YR5awr+yYfWdnbMgEQ3bPHtmfaBT9in5Hd4006qzO7LFWRA//APKm6Lc=</latexit>

1

<latexit sha1_base64="21AHyoIKknh6nngjweKMKcaS5MM=">AAAC1nicZVJNb9NAEN2YFkpKaQtHLqtGlThEkV1B4VjBhWMrNW2kNKrGm3Gzyn5Yu2MkY4Ub4sCFA/09/R38m67jHOpkpNU+v3m7njezaa6kpzj+34mebW0/f7Hzsrv7au/1/sHhmytvCydwKKyybpSCRyUNDkmSwlHuEHSq8Dqdf63z19/ReWnNJZU5TjTcGZlJARSoi5Pbg148iJfBN0GyAj22ivPbw87DzdSKQqMhocD7cRLnNKnAkRQKF92bwmMOYg53OA7QgEY/qZaVLvhxYKY8sy4sQ3zJPj1RaaAZWat8H7T3pU7rvSb7PACa6b4nDa500374aJSpgznSotu6KJhOg0cd6GNeX8A9FVnW0qS6VW5Vzmrhgrc8SFP3NhgM1eRkqW2xEmAEqjbnUHn5Y00IzkG5RjUWQ1vq//r1XFPMZm5cUPZ5UkmTF4RGNF3NCsXJ8nrGfCodClJlACCcDIPhYgYOBIWX0A0jT9YHvAmuTgbJ6eDjxYfe2ZfV8HfYO3bE3rOEfWJn7Bs7Z0MmGLI/7B+7j0bRz+hX9LuRRp3VmbesFdHfR/UY6Lg=</latexit>

2

<latexit sha1_base64="9O5YUYjD/eaQ7/D4rD2R6fFFopo=">AAAC1nicZVLJbtswEKXVLXW3pD32QtQI0INhSF1zDNJLjglQJwYcIxjRo5gwF4EcFVAE5xbkkEsOzff0O/I3oSwfKnsAgk9vHql5M0xzJT3F8UMnevL02fMXWy+7r16/eftue+f9ibeFEzgUVlk3SsGjkgaHJEnhKHcIOlV4ms5/1fnTP+i8tOY3lTlONFwYmUkBFKjjr+fbvXgQL4NvgmQFemwVR+c7nX9nUysKjYaEAu/HSZzTpAJHUihcdM8KjzmIOVzgOEADGv2kWla64LuBmfLMurAM8SX7/4lKA83IWuX7oL0vdVrvNdnnAdBM9z1pcKWb9sNHo0wdzJEW3dZFwXQaPOpA7/L6Au6pyLKWJtWtcqtyVgsXvOVBmrq3wWCoJidLbYuVACNQtTmHysvLNSE4B+Ua1VgMban/69dzTTGbuXFB2d6kkiYvCI1oupoVipPl9Yz5VDoUpMoAQDgZBsPFDBwICi+hG0aerA94E5x8GSQ/Bt+Pv/X2D1bD32If2Sf2mSXsJ9tnh+yIDZlgyG7ZX3YfjaKr6Dq6aaRRZ3XmA2tFdPcI94rouQ==</latexit>

3

<latexit sha1_base64="dufqYLgeEIHzlj/VlvLBD8oLuFk=">AAAC2HicZVJNb9NAEN2YAiV8tIUjlxVRJQ5RZKN+Haty4VgEaaumUTTejJNV9sPaHSO5ViRuiAMXDvBz+B38G9ZxDjgZabXPb96u581smivpKY7/dqIHOw8fPd590n367PmLvf2Dl1feFk7gUFhl3U0KHpU0OCRJCm9yh6BThdfp4n2dv/6CzktrPlOZ41jDzMhMCqBAfbqfJJP9XjyIV8G3QbIGPbaOy8lB58/d1IpCoyGhwPtREuc0rsCRFAqX3bvCYw5iATMcBWhAox9Xq1qX/DAwU55ZF5YhvmL/P1FpoDlZq3wftPelTuu9Jvs8AJrrvicNrnTTfvholKmDBdKy27oo2E6DSx3oQ15fwD0VWdbSpLpVblXOa+GStzxIU3c3GAzV5GSpbbESYASqNudQeXm/IQTnoNygGouhLfV//WauKWY7NyooOxtX0uQFoRFNV7NCcbK8njKfSoeCVBkACCfDYLiYgwNB4S10w8iTzQFvg6t3g+RkcPzxqHd+sR7+LnvN3rC3LGGn7Jx9YJdsyASbsR/sF/sd3UZfo2/R90YaddZnXrFWRD//AVJu6aQ=</latexit>z1

<latexit sha1_base64="1IBBKdIvKSJaCipmLJwUD2+pZJQ=">AAAC2HicZVJNb9NAEN2YAm3KRwtHLqtGlThEkV3xdazgwrGIpq2aRtF4M05W2Q9rd4wwViRuiAMXDvBz+B38m67jHOpkpNU+v3m7njezaa6kpzj+34nu7dx/8HB3r7v/6PGTpweHzy68LZzAobDKuqsUPCppcEiSFF7lDkGnCi/TxYc6f/kFnZfWnFOZ41jDzMhMCqBAff46OZkc9OJBvAq+DZI16LF1nE0OO/9uplYUGg0JBd6PkjincQWOpFC47N4UHnMQC5jhKEADGv24WtW65MeBmfLMurAM8RV790SlgeZkrfJ90N6XOq33muzzAGiu+540uNJN++GjUaYOFkjLbuuiYDsNLnWgj3l9AfdUZFlLk+pWuVU5r4VL3vIgTd3dYDBUk5OltsVKgBGo2pxD5eW3DSE4B+UG1VgMban/6zdzTTHbuVFB2btxJU1eEBrRdDUrFCfL6ynzqXQoSJUBgHAyDIaLOTgQFN5CN4w82RzwNrg4GSRvBq8/veqdvl8Pf5e9YEfsJUvYW3bKPrIzNmSCzdgv9of9ja6j79GP6GcjjTrrM89ZK6Lft0/46aM=</latexit>x2

<latexit sha1_base64="5LKUaJrt6HLb6LUFBJeIoSgnCBg=">AAAC1nicZVJNT9tAEN24tKXpF5QjlxURUg9RZFf044jg0iNIBCKFCI03Y7LKfli740quld4qDlw40N/D7+i/6TrOoU5GWu3zm7freTOb5kp6iuO/nejZ1vMXL7dfdV+/efvu/c7uh0tvCydwKKyybpSCRyUNDkmSwlHuEHSq8Cqdn9b5qx/ovLTmgsocJxpujcykAArUeXKz04sH8TL4JkhWoMdWcXaz23m6nlpRaDQkFHg/TuKcJhU4kkLhontdeMxBzOEWxwEa0Ogn1bLSBT8MzJRn1oVliC/Z/09UGmhG1irfB+19qdN6r8k+D4Bmuu9JgyvdtB8+GmXqYI606LYuCqbT4FEH+pDXF3BPRZa1NKlulVuVs1q44C0P0tS9DQZDNTlZalusBBiBqs05VF7+XBOCc1CuUY3F0Jb6v3491xSzmRsXlH2bVNLkBaERTVezQnGyvJ4xn0qHglQZAAgnw2C4mIEDQeEldMPIk/UBb4LLT4Pky+Dz+VHv+GQ1/G22zw7YR5awr+yYfWdnbMgEQ3bPHtmfaBT9in5Hd4006qzO7LFWRA//APKm6Lc=</latexit>

1

<latexit sha1_base64="21AHyoIKknh6nngjweKMKcaS5MM=">AAAC1nicZVJNb9NAEN2YFkpKaQtHLqtGlThEkV1B4VjBhWMrNW2kNKrGm3Gzyn5Yu2MkY4Ub4sCFA/09/R38m67jHOpkpNU+v3m7njezaa6kpzj+34mebW0/f7Hzsrv7au/1/sHhmytvCydwKKyybpSCRyUNDkmSwlHuEHSq8Dqdf63z19/ReWnNJZU5TjTcGZlJARSoi5Pbg148iJfBN0GyAj22ivPbw87DzdSKQqMhocD7cRLnNKnAkRQKF92bwmMOYg53OA7QgEY/qZaVLvhxYKY8sy4sQ3zJPj1RaaAZWat8H7T3pU7rvSb7PACa6b4nDa500374aJSpgznSotu6KJhOg0cd6GNeX8A9FVnW0qS6VW5Vzmrhgrc8SFP3NhgM1eRkqW2xEmAEqjbnUHn5Y00IzkG5RjUWQ1vq//r1XFPMZm5cUPZ5UkmTF4RGNF3NCsXJ8nrGfCodClJlACCcDIPhYgYOBIWX0A0jT9YHvAmuTgbJ6eDjxYfe2ZfV8HfYO3bE3rOEfWJn7Bs7Z0MmGLI/7B+7j0bRz+hX9LuRRp3VmbesFdHfR/UY6Lg=</latexit>

2

<latexit sha1_base64="9O5YUYjD/eaQ7/D4rD2R6fFFopo=">AAAC1nicZVLJbtswEKXVLXW3pD32QtQI0INhSF1zDNJLjglQJwYcIxjRo5gwF4EcFVAE5xbkkEsOzff0O/I3oSwfKnsAgk9vHql5M0xzJT3F8UMnevL02fMXWy+7r16/eftue+f9ibeFEzgUVlk3SsGjkgaHJEnhKHcIOlV4ms5/1fnTP+i8tOY3lTlONFwYmUkBFKjjr+fbvXgQL4NvgmQFemwVR+c7nX9nUysKjYaEAu/HSZzTpAJHUihcdM8KjzmIOVzgOEADGv2kWla64LuBmfLMurAM8SX7/4lKA83IWuX7oL0vdVrvNdnnAdBM9z1pcKWb9sNHo0wdzJEW3dZFwXQaPOpA7/L6Au6pyLKWJtWtcqtyVgsXvOVBmrq3wWCoJidLbYuVACNQtTmHysvLNSE4B+Ua1VgMban/69dzTTGbuXFB2d6kkiYvCI1oupoVipPl9Yz5VDoUpMoAQDgZBsPFDBwICi+hG0aerA94E5x8GSQ/Bt+Pv/X2D1bD32If2Sf2mSXsJ9tnh+yIDZlgyG7ZX3YfjaKr6Dq6aaRRZ3XmA2tFdPcI94rouQ==</latexit>

3

<latexit sha1_base64="gDF/pIWd5kkOXKZExNZ9lt0YHUs=">AAAC2HicZVJNb9NAEN2YFkpaoIUjl1WjSj1EkY346LGCC8ciSFs1jaLxZpyssh/W7riSsSJxQxy4cICfw+/g37COc6iTkVb7/Obtet7MprmSnuL4Xyd6sLP78NHe4+7+wZOnzw6Pnl96WziBQ2GVddcpeFTS4JAkKbzOHYJOFV6liw91/uoOnZfWfKEyx7GGmZGZFECB+lxOkslhLx7Eq+DbIFmDHlvHxeSo8/d2akWh0ZBQ4P0oiXMaV+BICoXL7m3hMQexgBmOAjSg0Y+rVa1LfhKYKc+sC8sQX7H3T1QaaE7WKt8H7X2p03qvyT4PgOa670mDK920Hz4aZepggbTsti4KttPgUgf6hNcXcE9FlrU0qW6VW5XzWrjkLQ/S1N0NBkM1OVlqW6wEGIGqzTlUXn7dEIJzUG5QjcXQlvq/fjPXFLOdGxWUnY0rafKC0Iimq1mhOFleT5lPpUNBqgwAhJNhMFzMwYGg8Ba6YeTJ5oC3weWrQfJ28ObT6975+/Xw99hLdsxOWcLesXP2kV2wIRNsxn6y3+xPdBN9i75HPxpp1FmfecFaEf36D0/66aM=</latexit>y1

<latexit sha1_base64="dufqYLgeEIHzlj/VlvLBD8oLuFk=">AAAC2HicZVJNb9NAEN2YAiV8tIUjlxVRJQ5RZKN+Haty4VgEaaumUTTejJNV9sPaHSO5ViRuiAMXDvBz+B38G9ZxDjgZabXPb96u581smivpKY7/dqIHOw8fPd590n367PmLvf2Dl1feFk7gUFhl3U0KHpU0OCRJCm9yh6BThdfp4n2dv/6CzktrPlOZ41jDzMhMCqBAfbqfJJP9XjyIV8G3QbIGPbaOy8lB58/d1IpCoyGhwPtREuc0rsCRFAqX3bvCYw5iATMcBWhAox9Xq1qX/DAwU55ZF5YhvmL/P1FpoDlZq3wftPelTuu9Jvs8AJrrvicNrnTTfvholKmDBdKy27oo2E6DSx3oQ15fwD0VWdbSpLpVblXOa+GStzxIU3c3GAzV5GSpbbESYASqNudQeXm/IQTnoNygGouhLfV//WauKWY7NyooOxtX0uQFoRFNV7NCcbK8njKfSoeCVBkACCfDYLiYgwNB4S10w8iTzQFvg6t3g+RkcPzxqHd+sR7+LnvN3rC3LGGn7Jx9YJdsyASbsR/sF/sd3UZfo2/R90YaddZnXrFWRD//AVJu6aQ=</latexit>z1

<latexit sha1_base64="5LKUaJrt6HLb6LUFBJeIoSgnCBg=">AAAC1nicZVJNT9tAEN24tKXpF5QjlxURUg9RZFf044jg0iNIBCKFCI03Y7LKfli740quld4qDlw40N/D7+i/6TrOoU5GWu3zm7freTOb5kp6iuO/nejZ1vMXL7dfdV+/efvu/c7uh0tvCydwKKyybpSCRyUNDkmSwlHuEHSq8Cqdn9b5qx/ovLTmgsocJxpujcykAArUeXKz04sH8TL4JkhWoMdWcXaz23m6nlpRaDQkFHg/TuKcJhU4kkLhontdeMxBzOEWxwEa0Ogn1bLSBT8MzJRn1oVliC/Z/09UGmhG1irfB+19qdN6r8k+D4Bmuu9JgyvdtB8+GmXqYI606LYuCqbT4FEH+pDXF3BPRZa1NKlulVuVs1q44C0P0tS9DQZDNTlZalusBBiBqs05VF7+XBOCc1CuUY3F0Jb6v3491xSzmRsXlH2bVNLkBaERTVezQnGyvJ4xn0qHglQZAAgnw2C4mIEDQeEldMPIk/UBb4LLT4Pky+Dz+VHv+GQ1/G22zw7YR5awr+yYfWdnbMgEQ3bPHtmfaBT9in5Hd4006qzO7LFWRA//APKm6Lc=</latexit>

1

<latexit sha1_base64="21AHyoIKknh6nngjweKMKcaS5MM=">AAAC1nicZVJNb9NAEN2YFkpKaQtHLqtGlThEkV1B4VjBhWMrNW2kNKrGm3Gzyn5Yu2MkY4Ub4sCFA/09/R38m67jHOpkpNU+v3m7njezaa6kpzj+34mebW0/f7Hzsrv7au/1/sHhmytvCydwKKyybpSCRyUNDkmSwlHuEHSq8Dqdf63z19/ReWnNJZU5TjTcGZlJARSoi5Pbg148iJfBN0GyAj22ivPbw87DzdSKQqMhocD7cRLnNKnAkRQKF92bwmMOYg53OA7QgEY/qZaVLvhxYKY8sy4sQ3zJPj1RaaAZWat8H7T3pU7rvSb7PACa6b4nDa500374aJSpgznSotu6KJhOg0cd6GNeX8A9FVnW0qS6VW5Vzmrhgrc8SFP3NhgM1eRkqW2xEmAEqjbnUHn5Y00IzkG5RjUWQ1vq//r1XFPMZm5cUPZ5UkmTF4RGNF3NCsXJ8nrGfCodClJlACCcDIPhYgYOBIWX0A0jT9YHvAmuTgbJ6eDjxYfe2ZfV8HfYO3bE3rOEfWJn7Bs7Z0MmGLI/7B+7j0bRz+hX9LuRRp3VmbesFdHfR/UY6Lg=</latexit>

2

<latexit sha1_base64="9O5YUYjD/eaQ7/D4rD2R6fFFopo=">AAAC1nicZVLJbtswEKXVLXW3pD32QtQI0INhSF1zDNJLjglQJwYcIxjRo5gwF4EcFVAE5xbkkEsOzff0O/I3oSwfKnsAgk9vHql5M0xzJT3F8UMnevL02fMXWy+7r16/eftue+f9ibeFEzgUVlk3SsGjkgaHJEnhKHcIOlV4ms5/1fnTP+i8tOY3lTlONFwYmUkBFKjjr+fbvXgQL4NvgmQFemwVR+c7nX9nUysKjYaEAu/HSZzTpAJHUihcdM8KjzmIOVzgOEADGv2kWla64LuBmfLMurAM8SX7/4lKA83IWuX7oL0vdVrvNdnnAdBM9z1pcKWb9sNHo0wdzJEW3dZFwXQaPOpA7/L6Au6pyLKWJtWtcqtyVgsXvOVBmrq3wWCoJidLbYuVACNQtTmHysvLNSE4B+Ua1VgMban/69dzTTGbuXFB2d6kkiYvCI1oupoVipPl9Yz5VDoUpMoAQDgZBsPFDBwICi+hG0aerA94E5x8GSQ/Bt+Pv/X2D1bD32If2Sf2mSXsJ9tnh+yIDZlgyG7ZX3YfjaKr6Dq6aaRRZ3XmA2tFdPcI94rouQ==</latexit>

3

<latexit sha1_base64="1IBBKdIvKSJaCipmLJwUD2+pZJQ=">AAAC2HicZVJNb9NAEN2YAm3KRwtHLqtGlThEkV3xdazgwrGIpq2aRtF4M05W2Q9rd4wwViRuiAMXDvBz+B38m67jHOpkpNU+v3m7njezaa6kpzj+34nu7dx/8HB3r7v/6PGTpweHzy68LZzAobDKuqsUPCppcEiSFF7lDkGnCi/TxYc6f/kFnZfWnFOZ41jDzMhMCqBAff46OZkc9OJBvAq+DZI16LF1nE0OO/9uplYUGg0JBd6PkjincQWOpFC47N4UHnMQC5jhKEADGv24WtW65MeBmfLMurAM8RV790SlgeZkrfJ90N6XOq33muzzAGiu+540uNJN++GjUaYOFkjLbuuiYDsNLnWgj3l9AfdUZFlLk+pWuVU5r4VL3vIgTd3dYDBUk5OltsVKgBGo2pxD5eW3DSE4B+UG1VgMban/6zdzTTHbuVFB2btxJU1eEBrRdDUrFCfL6ynzqXQoSJUBgHAyDIaLOTgQFN5CN4w82RzwNrg4GSRvBq8/veqdvl8Pf5e9YEfsJUvYW3bKPrIzNmSCzdgv9of9ja6j79GP6GcjjTrrM89ZK6Lft0/46aM=</latexit>x2

<latexit sha1_base64="L8PAI5nRa5Dlc69+8ik6z/Tsk24=">AAAC2HicZVLJbtswEKXVLXW6JO2xF6JGgB4MQwrS5Ri0lxxTJE6COIYxokc2YS4COSqgCgZ6K3roJYf2c/od/ZtQlg+RPQDBpzeP1LwZprmSnuL4fyd68PDR4yc7T7u7z56/eLm3/+rC28IJHAqrrLtKwaOSBockSeFV7hB0qvAyXXyp85ff0HlpzTmVOY41zIzMpAAK1Fk5OZzs9eJBvAq+DZI16LF1nE72O/9uplYUGg0JBd6PkjincQWOpFC47N4UHnMQC5jhKEADGv24WtW65AeBmfLMurAM8RV7/0SlgeZkrfJ90N6XOq33muzzAGiu+540uNJN++GjUaYOFkjLbuuiYDsNLnWgD3h9AfdUZFlLk+pWuVU5r4VL3vIgTd3dYDBUk5OltsVKgBGo2pxD5eX3DSE4B+UG1VgMban/6zdzTTHbuVFB2adxJU1eEBrRdDUrFCfL6ynzqXQoSJUBgHAyDIaLOTgQFN5CN4w82RzwNrg4HCQfBu+/HvWOP6+Hv8PesLfsHUvYR3bMTtgpGzLBZuw3+8P+RtfRj+hn9KuRRp31mdesFdHtHVJs6aQ=</latexit>y2

FIG. D.1. Graphs useful for understanding the new method for calculating coefficients ci. (a) Once the types of black edges
are assigned, the contribution to M2(k, n) depends only on the number of black eij edges connecting row i to row j. (b) In
order to compute c1, the number of single-loop graphs contributing to M2, we first set e11 = e33 = 0 (later adding in the effect
of nonzero values), fix the winding number w of the loop, and break up 1-3 edges into x1 = (e13 + w)/2 clockwise edges and
x2 = (e13 − w)/2 counterclockwise edges. We similarly break up the 1-2 and 2-3 edges. We then use the BEST theorem [31]
to count the number of Eulerian circuits on this directed graph. (c) For u = 3, the three types of arborescences contributing
to tu(G) = x2z1 + y2x2 + y1z1 for the graph G shown in (b).

black edges e11 + e12 + e13 + e23 + e33. As in the main text, we need to define a more general function g(e, σ, c, s) to
make the recursion work. σ is a binary variable, so that σ = 1 means we are in the process of building a loop, while
σ = 0 means that we need to start a new loop. If σ = 1, we need to also specify s ∈ {1, 2, 3} (standing for start)
indicating the row where the current loop started and c ∈ {1, 2, 3} (standing for current) indicating the row where
we currently are.

As in the main text, the recursive procedure is efficient, i.e. takes polynomial time in the number of edges. We first
directly compute g(e, σ, c, s) for small values of e11 + e12 + e13 + e23 + e33. Then the recursive step goes as follows.
If σ = 0, we can either (1) close the loop right away by reducing e11 or e33 by 1, keep σ = 0, and multiply by k, or
(2) set σ = 1, start a new loop at row i, set s = i, reduce eij by 1 (for some j), and set c = j. If σ = 1, we can either
(1) close the loop by reducing ecs by 1, set σ = 0, and multiply by k, or (2) continue building the loop, keep σ = 1,
keep s unchanged, reduce ecj by 1 (for some j), and change the value of c to j. As we do these calculations, we need
to also include appropriate combinatorial factors deciding which black edge to take (e.g., if we pick one of eij edges,
we need to multiply by eij , and if i = j, we need to multiply by another factor of 2).

While we have not coded up this procedure, we believe that it offers another complementary way of understanding
and analyzing the second moment.

1. Computing c1

Again, while we have not coded up the above recursive procedure, we will show how to use the new approach to
compute c1 in Eq. (D1), i.e., the number of ways to build a single-loop graph, which we were not able to directly
compute using the original method.

To proceed, we will at first ignore the contributions of the edges e11 and e33 (effectively pretending that they are
equal to zero), but we will address how to deal with them later on. We will also assign a direction to this single
loop, and we will later divide the final answer by two because each loop will be counted twice (because there are
two possible directions around a loop). While it may seem to make things more difficult to add directionality to a
previously undirected graph, it will actually allow us to make use of known results.

To proceed, we sort the contributions to c1 according to the winding number w of the loop around the triangle
formed by rows 1, 2, and 3, which can now be well defined because we have added directionality to the edges. Once
w is fixed, the total numbers of edges in the triangle of each directionality also become fixed. Specifically, as shown
in Fig. D.1(b), x1 = (e13 + w)/2 is the number of 1-3 edges traversed (i.e., directed) from 3 to 1, x2 = (x − w)/2
is the number of 1-3 edges traversed from 1 to 3, y1 = (e12 + w)/2 is the number 1-2 edges traversed from 1 to 2,
y2 = (e12−w)/2 is the number of 1-2 edges traversed from 2 to 1, z1 = (e23+w)/2 is the number 2-3 edges traversed
from 2 to 3, and z2 = (e23 − w)/2 is the number 2-3 edges traversed from 3 to 2. Note that, here, we are treating
a positive winding number as going clockwise around the graph. There will also be combinatorial factors associated
with which edges go in which direction, but we will handle that factor later. We are now interested in the number
of Eulerian circuits on the resulting directed graph G, i.e., the number of directed closed paths that visit each edge

34

exactly once. The BEST theorem [31] says that the number of such Eulerian circuits is

ec(G) = tu(G)
∏
v∈V

(deg(v)− 1)!, (D5)

where V = {1, 2, 3} is the set of 3 vertices of our graph, deg(v) is the indegree of vertex v, and tu(G) is the number of
arborescences of G with root u, i.e., the number of directed tree subgraphs of G such that, for any vertex v, there is
exactly one directed path from v to u. If graph the G has an Eulerian circuit, it is known that tu(G) is independent
of the choice of u. Choosing u = 3, the three types of trees (arborescences) contributing to tu(G) for the graph G in
Fig. D.1(b) are shown in Fig. D.1(c). The result is tu(G) = x2z1 + y2x2 + y1z1. The term x2z1 [corresponding to the
first graph in Fig. D.1(c)] counts trees (arborescences) made up of a 1 → 3 edge and a 2 → 3 edge; the term y2x2

[corresponding to the second graph in Fig. D.1(c)] counts trees made up of a 2 → 1 edge and a 1 → 3 edge; and the
term y1z1 [corresponding to the third graph in Fig. D.1(c)] counts trees made up of a 1 → 2 edge and a 2 → 3 edge.
Plugging in the definitions of xi, yi, and zi, we find tu(G) = (w2 + e12e13 + e13e23 + e23e12)/4. Therefore,

ec(G) =
1

4
(w2 + e12e13 + e13e23 + e23e12)

(
e12 + e13

2
− 1

)
!

(
e12 + e23

2
− 1

)
!

(
e13 + e23

2
− 1

)
!

=
1

4

(
w2 + 3n2 − (p1 − p4)

2 − 2n(p1 + p4)
)
(n− p1 − 1)!(n− 1)!(n− p4 − 1)!. (D6)

We now include the aformentioned combinatorial factors that account for which edges receive which directionality.
When choosing which x1 of the e13 edges to make into 3 → 1 edges, we pick up a combinatorial factor of

(
e13
x1

)
=(

n−p1−p4

(n−p1−p4+w)/2

)
. Similarly for e12 and e23:

(
e12
y1

)
=
(

n−p1+p4

(n−p1+p4+w)/2

)
and

(
e23
z1

)
=
(

n+p1−p4

(n+p1−p4+w)/2

)
.

We can now also account for the fact that e11 and e33 may actually be nonzero. We keep G defined as before (i.e.
using only 1-2, 1-3, and 2-3 edges), but we now dress the loops defined on G (and counted above) with additional
1-1 and 3-3 edges. The number of times our loop visits vertex 1 is given by deg(1) = n − p1, so we need to sort
e11 = p1 edges into n− p1 buckets, which gives a factor of

(
e11+n−p1−1

e11

)
=
(
n−1
p1

)
(by the standard “stars and bars”

argument). Similarly, e33 = p4 loops give
(
e33+n−p4−1

e33

)
=
(
n−1
p4

)
. Because all e11 = p1 edges are distinguishable and

can be traversed in two different ways, we also get a factor of p1!2
p1 (that is, after the bucket counts are decided,

we still have to order the edges and assign each a direction). We similarly get a factor of p4!2
p4 . Putting all these

elements together, we have

c1 =

n∑
p1=0

n−p1∑
p4=0

(
n

p1

)(
n− p1
p4

)
2pd1(e)

=

n−1∑
p1=0

n−max(p1,1)∑
p4=0

(
n

p1

)(
n− p1
p4

)
2p
∑
w

1

8

(
w2 + 3n2 − (p1 − p4)

2 − 2n(p1 + p4)
)
(n− p1 − 1)!(n− 1)!(n− p4 − 1)!

×
(

n− p1 − p4
(n− p1 − p4 + w)/2

)(
n− p1 + p4

(n− p1 + p4 + w)/2

)(
n+ p1 − p4

(n+ p1 − p4 + w)/2

)(
n− 1

p1

)(
n− 1

p4

)
p1!2

p1p4!2
p4 (D7)

= n!((n− 1)!)32n−3
n∑

p1=0

n−p1∑
p4=0

n−p1−p4∑
w=−n+p1+p4

(
n−p1+p4

(n−p1+p4+w)/2

)(
n+p1−p4

(n+p1−p4+w)/2

)
(w2 + 3n2 − (p1 − p4)

2 − 2n(p1 + p4))

p1!p4!((n− p1 − p4 − w)/2)!((n− p1 − p4 + w)/2)!
.

In the second line, we have introduced an extra factor of 1/2 because we counted every loop twice because of the
two directions in which each loop can be traversed. In the second line, we also excluded the cases where all black
edge sets are of type-1 (p1 = n) and where all black edge sets are of type-4 (p4 = n), as there is no single-loop
contribution in this case (allowing for p1 = n would make

(
n−1
p1

)
undefined; similarly for p4 = n). In the last line,

to simplify the expression, we allow p1 = n and p4 = n because the corresponding contribution is now well-defined
and vanishes anyway. In the last line, the sum over w runs in increments of 2 due to a parity constraint (flipping
the directionality of a single edge actually changes the winding number by 2). While one can evaluate the sum over
w in the final expression in Eq. (D7) in terms of hypergeometric functions, we were not able to then evaluate the
remaining sums over p4 and p1 to obtain a closed-form expression for c1.
Numerical evaluation of the final expression in Eq. (D7) agrees with the evaluation of c1 using the recursive method

in the main text up to n = 40 (which is the largest n we apply the latter method to). The final expression in Eq. (D7)
is, however, so simple that it can easily be evaluated for much larger values of n. For example, Mathematica [28] on
a personal computer evaluates it for n = 200 in about 15 seconds. One can also use Eq. (D7) to study in detail the
asymptotic dependence of c1 on n. We also hope that the method introduced in this section can yield other useful
analytical results about ci.

	The Second Moment of Hafnians in Gaussian Boson Sampling
	Abstract
	Contents
	Introduction
	The output distribution of Gaussian boson sampling
	Gaussian boson sampling
	Moments of the Gaussian Boson Sampling distribution and their significance
	Summary of Results

	Graph-theoretical analysis of Gaussian Boson Sampling moments
	First Moment
	Second moment

	Recursion for the second moment
	Analysis of the second moment
	Numerical Evaluation of the Recursion
	Scaling of the Second Moment

	Locating the Transition in Anticoncentration
	Conclusion
	Acknowledgments
	References
	Classical Complexity of Evaluating Recursion
	Building the Recursion
	Base Cases for Recursion
	Cases (1)-(4)
	Cases (5)-(12)
	Cases (13)-(16)
	Case (17)

	Computing Individual Coefficients
	Leading Order Coefficient c2n
	First Subleading Coefficient c2n-1

	Alternative method for computing coefficients ci
	Computing c1

