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Abstract

Autonomous quantum memories are a way to passively protect quantum informa-
tion using engineered dissipation that creates an “always-on” decoder. We analyze
Markovian autonomous decoders that can be implemented with a wide range of qubit
and bosonic error-correcting codes, and derive several upper bounds and a lower bound
on the logical error rate in terms of correction and noise rates. For many-body quantum
codes, we show that, to achieve error suppression comparable to active error correction,
autonomous decoders generally require correction rates that grow with code size. For
codes with a threshold, we show that it is possible to achieve faster-than-polynomial
decay of the logical error rate with code size by using superlogarithmic scaling of the
correction rate. We illustrate our results with several examples. One example is an
exactly solvable global dissipative toric code model that can achieve an effective logical
error rate that decreases exponentially with the linear lattice size, provided that the
recovery rate grows proportionally with the linear lattice size.

One of the biggest challenges in quantum computing is the problem of noise. Any re-
alistic qubit architecture is prone to dissipation due to interactions with the environment,
leading to errors and subsequent loss of quantum information. Traditional error correction
strategies have focused on manual periodic error diagnosis and correction [1, 2]. In recent
years, however, there has been a surge in autonomous “hardware” methods designed to
compensate for noise using engineered dissipation [3–7]. Several dissipative quantum memo-
ries have been successfully implemented experimentally, in particular using various bosonic
codes1 [9–15], but they have not been fully exploited for error correction in real many-body
systems consisting of several qubits or qudits.

∗These authors contributed equally.
†This work was done prior to joining AWS.
1The name of each code, when introduced for the first time in the manuscript, will contain a hyperlink

to the code’s corresponding webpage in the Error Correction Zoo [8].
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A topic closely related to dissipatively stabilized quantum memories is self-correction
[16], a process in which the propagation of errors is naturally limited without performing
active error correction. An example of self-correction in the classical world is the storage of
information in magnetic hard drives. Here, classical information is encoded in a ferromagnet
by its collective spin magnetization, and errors resulting from spontaneous individual spin
flips become energetically unfavorable and are therefore eliminated by a local thermalization
process. This mechanism ensures a memory lifetime that scales exponentially with system
size [17, 18].

The principle of classical self-correction can be extended to quantum systems, such as
those stabilized by frustration-free Hamiltonians [2]. For example, the four-dimensional
toric code [19] demonstrates a finite-temperature topological order that naturally protects
quantum information [20–22]. Unfortunately, several no-go results preclude local frustration-
free Hamiltonians from achieving self-correction with a constant error rate in two dimensions
[23–26] and for some three-dimensional models [27–29]. Such studies are also hampered by
broad challenges associated with quantum complexity [30–33].

The use of dissipative processes to aid or induce self-correction in quantum systems
continues to be actively studied. In some cases, it is possible to show numerically that
lower-dimensional systems can still offer quantum memory times that grow with system
size [34–39]. However, there is currently no unified approach that allows general conclusions
to be drawn about memory performance, and there are no universal bounds on the aid that
a dissipative process can provide.

In this work we derive a general non-perturbative bound (see Theorem 1), valid for a wide
class of autonomous quantum memories and restricted by only a few intuitive assumptions.
This bound expresses the logical error rate of a dissipative memory in terms of the noise-to-
recovery ratio — the ratio between the benevolent recovery dissipation rates and the strength
of any malevolent noise. The core idea is to use the resummation of Dyson’s perturbative
expansion, which allows one to derive the logical error in the late-time limit. We show that,
as soon as the noise-to-recovery ratio is less than a critical value, autonomous memory can
achieve lifetimes that grow exponentially with the inverse noise rate. At the same time, this
general bound promises an exponentially small logical error rate only if the recovery rate
grows with system size.

To understand better the results of Theorem 1, we specialize our analysis to a subclass of
dissipative memories that we call global decoders. This specific model represents an oversim-
plified recovery process that takes any error state directly into the codespace. Although this
model is technically different from many dissipative memories that use the gradual relax-
ation of error states into the codespace, it serves as an exactly solvable example of decoding
dynamics. As we will show below, it also saturates the logical error rate bound established
in Theorem 1.

Our global decoder model can be seen as an autonomous version of active error correction
with the assumption that rounds of error correction essentially “take zero time” (cf. [40]).
We compress syndrome extraction, any classical post-processing involved in decoding, and
the corresponding recovery operation into a pre-compiled procedure—in the form of a series
of jump operators—that is implemented instantaneously and autonomously. As such, the
model can be seen as an idealized form of autonomous correction for which local syndrome
measurements, efficient decoders, and recoveries are implemented instantaneously at random
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Type of the results on ϵ(t) Section Noise type Comments

Upper bound (Thm. 1) 2 Generic Applicable to generic noise
Asymptotics at late time 3.1 Poissonian Valid only for late times
Upper bound (Thm. 2) 3.2 Poissonian Tight for intermediate times
Upper bound (Thm. 3) 3.2 Pauli Improved Thm. 2 for Pauli noise
Upper bound (Thm. 4) 3.3 Poissonian Tight for short times
Lower bound 4 Pauli Restricted to stabilizer codes

Table 1: Summary of the results. Here ϵ(t) measures the logical error probability at time t
as defined in Section 1. The notion of Poissonian noise is discussed in Section 3.

times.
Our global decoder assumption, while seemingly unphysical, demonstrates that autonomous

memories, including those utilizing seemingly limitless resources, do not guarantee perfor-
mance comparable to active error correction. We find that the assumption of immediate
system-wide corrections does not automatically yield memory times that scale exponen-
tially, or even polynomially, with system size. For multi-qubit systems undergoing Pauli
noise, we show that memory lifetime scales exponentially only with the ratio of two values:
the code distance multiplied by recovery process rate and the total error rate (i.e. sum of
error rates for each physical qubit)—see Theorem 2 and the discussion around it. Thus, even
if the code distance grows linearly with system size (as in the case of asymptotically good
quantum low-density parity-check (QLDPC) codes [41–43]), the correction rate must grow
with system size to yield system-size growing memory lifetime. By providing a lower bound
derived for a subclass of models with Pauli noise, we also show that this scaling cannot be
improved.

The conclusion implied by the bounds described above is that it is impossible to obtain a
global decoder with either exponential or polynomial lifetime using our seemingly powerful
engineered dissipation with a constant recovery rate. This result illustrates that the details
of the recovery process matter, and the simple fact that it has dissipative gap—i.e. it gets
the system into the codespace in finite time—alone is not enough for a scalable dissipative
memory.

It is noteworthy that the global decoder model combined with Pauli noise is an example
of a Poissonian process. Such Lindbladian dynamics can be represented as a sum of indepen-
dently sampled stochastic trajectories, including error and recovery quantum channels. This
representation allows us to bound the performance of the global decoder by counting the
trajectories that lead to a logical error. This representation also provides a simple intuitive
picture of the complex noisy dynamics. This idea may also be useful to obtain bounds on
the relaxation time for perturbed local Lindbladians [22], which would otherwise typically
require detailed balance, among other assumptions [20,44–46].

The remainder of the manuscript is organized as follows. In Section 1, we introduce the
model of a dissipative memory and, in particular, the global decoder. Next, in Section 2, we
provide a logical error bound for general dissipative memories that satisfy a few minimal as-
sumptions. To improve this result, in Section 3, we introduce the Poisson error model, which,
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acting in the presence of the global decoder model, has a better bound on the logical error
probability obtained by counting the stochastic trajectories. In particular, in Section 3.1,
we derive the asymptotic late-time behavior of the process using this stochastic trajectory
representation. In Sections 3.2 and 3.3, we generalize this result by giving upper bounds on
the performance of the global decoder. To justify the tightness of this result, in Section 4,
we derive a lower bound on the logical error probability for a special case of models with
Pauli noise. Finally, in Section 5, we present several examples and study them numerically.
The last Section 6, contains a discussion and outlook. The summary of the results can also
be found in Table 1.

1 Model

Our model of an autonomous quantum memory consists of three ingredients: a noisy
quantum system, a codespace, and a recovery map.

Noisy system. We consider a noisy quantum system with Markovian noise [47] and
accessible Hilbert space H of dimension 2D. The evolution of the system, in the absence of
external control, is characterized by the Lindblad master equation [48,49]

d

dt
ρ = ∆LEρ, (1)

where ρ is the density matrix of the system, ∆ is the noise rate, and LE is the error Lind-
bladian that takes the form

LE =
N∑
µ=1

λµ

(
EµρE

†
µ −

1

2
{E†

µEµ, ρ}
)
. (2)

Here, the N error operators {Eµ}Nµ=1 have spectral norm ∥Eµ∥ = 1, and λµ > 0 are real
weights satisfying

∑
µ λµ = N .

We choose error operators to be sufficiently general to encompass both noise models
in many-body systems, for which the Hilbert space H has a tensor-product structure, as
well as in single bosonic modes, for which H is embedded in a single countably infinite
space. As such, the error jump operators Eµ should be interpreted as the generators of
error combinations, or strings, that constitute our model’s error set. The accumulated error
operators are Kµ := Kµ1 . . . Kµk labeled by all possible error sequences µ = (µ1, . . . , µk),
where k ≥ 1, and the elementary errors in the sequence are

Kµ ∈ {E1, . . . , EN , E
†
1E1, . . . , E

†
NEN} . (3)

The set of elementary errors includes quadratic combinations of jump operators, such as
E†
µEµ, manifested in the last term of the Lindblad equation. When we decompose the

Lindblad evolution into many stochastic trajectories, this term of the Lindblad equation
characterizes the error accumulated between the error jumps. It is important to note, how-
ever, that these quadratic errors loose their relevance for unitary error operators Eµ. In
these situations, quadratic errors become trivial and should be ignored.
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Figure 1: Autonomous error correction. The horizontal lines in (a) and (b) represent
different error subspaces in the Hilbert space H, including the codespace C. (a) General
model of autonomous error correction: the correction process causes transitions between
error states, lowering the effective error weight until the system reaches the codespace. (b)
Global decoder: the recovery process causes transitions directly into the code space. (c)
Starting with an arbitrary initial state, the fidelity (i.e. the probability of being in the
codespace) in the absence of error processes approaches one with rate κ, for both general
and global decoders.

In the case of qubit codes, the error jump operators Eµ are often Pauli operators acting
on a single or a few qubits, while the Kµ are tensor products of such operators. In this
scenario, many error sequences are equivalent since, for example, two Pauli errors cancel
each other out, E2

µ = I. Therefore, we count only unique errors as part of the full set of Kµ.
In another example of a bosonic mode undergoing photon loss, the only jump operator Eµ is
the bosonic annihilation operator, and Kµ are powers of that operator and its adjoint, the
creation operator. In all cases, the length of µ, denoted as |µ|, provides an upper bound on
the number of resulting accumulated errors and quantifies their potential severity. We will
sometimes refer to |µ| as the weight of the error.

Codespace. We consider a single qubit of logical quantum information encoded in the
codespace C ∈ H. We further assume that C is a quantum code with error radius ℓ, defined
as the largest number for which all errors of weight ℓ and below are correctable. In particular,
a code with error radius ℓ satisfies the Knill-Laflamme condition [50]

PK†
µKνP = CµνP ∀µ,ν such that |µ|, |ν| ≤ ℓ , (4)

where Cµν are constants, and P is the projector on the codespace. At the same time, there
exist one or more errors of weight ℓ+1 such that, when added to the above set of correctable
errors, they violate Eq. (4). For example, qubit codes undergoing Pauli noise with distance
d have error radius ℓ = ⌊(d − 1)/2⌋ with respect to local Pauli noise. On the other hand,
bosonic rotation codes [51] undergoing photon loss and being able to detect S photon losses
have an error radius of ⌊S/2⌋ with respect to loss errors.

Recovery process. We consider the autonomous correction process with evolution
equation

d

dt
ρ = LRρ, (5)

where LR is the Lindbladian generator of the recovery dynamics. An initial state ρ(0) = ρ0
evolving under this Lindbladian to time t can be written as

ρ(t) = e−κtKt(ρ0) + (1− e−κt)R(ρ0), (6)
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where R = R2 is a quantum channel recovering information into the codespace (more gen-
erally, the right kernel of LR). The remaining term e−κt(Kt −R) acts on eigenspaces of the
Lindbladian corresponding to eigenvalues with nonzero real parts [52] [53, Eq. (1.35)]. We
have expressed this term using Kt (where K0 = I is the identity), which can be thought of as
a partial recovery map that can be designed to reduce error weight in local regions without
fully recovering in code space. We have explicitly written the partial recovery map in terms
of the dissipative gap κ—the nonzero eigenvalue of LR with the smallest real part—such
that it has a spectral radius bounded by one.

For this work, we specialize to a class of maps that can be described as decoders by
making three assumptions. Our first and mildest assumption is that Kt is diagonalizable,
meaning that its spectral norm is bounded above by one. Second, we assume that the
dynamics in Eq. (5) represent a valid recovery process; this means that the dissipative gap
κ is nonzero and the recovery map R corresponding to LR corrects errors up to the error
radius,

R(Kµρ0K
†
ν) ∝ ρ0 ∀ |µ|, |ν| ≤ ℓ. (7a)

In other words, any state, after the application of a correctable error, returns to the codespace
without a logical error having occurred. We discuss how to construct such recovery operators
in Appendix A.

Third, we assume that any intermediate-time recoveries do not increase the weight of an
error state (see Fig. 1a), i.e. for all t ≥ 0,

exp(LRt)(Kµρ0K
†
ν) =

∑
µ′ν′

aµν,µ′ν′(t)Kµ′ρ0K
†
ν′ , (7b)

where aµν,µ′ν′(t) = 0 if |µ′| > |µ| or |ν ′| > |ν|. This idealization rules out well-performing
decoders that can increase error weight even for negligible subsets of error configurations.
However, it allows us to derive our main result in Theorem 1.

Most of our results concern the global decoder model, which is a special case of the model
in Eq. (6) with assumptions in Eq. (7) where we additionally remove any partial recovery,
i.e. we assume Kt ≡ I. In this case, the Lindladian for the recovery process is given by

LR = κ
(
R(ρ)− ρ

)
, ρ(t) = e−κtρ0 + (1− e−κt)R(ρ0). (8)

In this model, the recovery dynamics return error states directly to the codespace (see
Fig. 1b). The recovery R may act non-locally in order to recover information into the
codespace in one step. The definition of the dissipative gap remains the same for both gen-
eral and such global decoders (see Fig. 1c).

Logical errors and critical error rate. The combination of the recovery process and
the error process results in a dynamical equation that describes the autonomous quantum
memory:

d

dt
ρ = L(ρ) := LR(ρ) + ∆LE(ρ). (9)

Our goal is to explore the performance of such a quantum memory. In particular, we aim
to find a regime where, in the presence of noise (∆ > 0), the probability of a logical error

6



after recovery for a family of codes with increasing ℓ vanishes polynomially or exponentially
in the limit ℓ→ ∞.

As a measure to quantify logical errors, we consider the trace distance as a function of
time between two initially orthogonal pure states in the codespace and define the following
error measure:

δ(t) := 1−min
ρ0

T (exp(Lt)ρ0, exp(Lt)ρ⊥0 ), ρ0 = |ψ0⟩⟨ψ0|, |ψ0⟩ ∈ C, (10)

where T (ρ, σ) is the trace distance between states ρ and σ. This error measure vanishes if
and only if there exists a recovery map that always returns the logical qubit to its initial,
error-free configuration. However, such a map may be complex and a priori unknown.

As an alternative, we define a simpler logical error measure that quantifies our ability to
recover information using the recovery map R based on the fidelity of recovery starting from
a pure initial state:

ϵ(t) := 1−min
ρ0

Tr [ρ0R exp(Lt)ρ0] , ρ0 = |ψ0⟩⟨ψ0|, |ψ0⟩ ∈ C, (11)

where the minimum, as in Eq. (10), is taken over pure states in the codespace.
For a single logical qubit, the two error measures δ(t) and ϵ(t) are related by (see Appendix

A)
δ(t) ≤ 2ϵ(t) . (12)

We will focus below on the measure ϵ(t) in Eq. (11). However, some results also apply to
δ(t) (see Theorems 1 and 4 below).

2 General bound and critical rate

In this section, we present a result that shows that autonomous memories always exhibit
exponential memory lifetimes for sufficiently small noise rate. To do this, we must first
introduce a parameter that quantifies the strength of the noise. We first introduce a space
of errors K spanned on the error states |ψwµ⟩ ∝ Kµ|w⟩, where w ∈ {0, 1} and Kµ are errors
of weight smaller that ℓ that stisfy the condition in Eq. (4). Then we can introduce ∥LE∥K
as the spectral norm of the superoperator LE over the subspace K ⊂ H, i.e. ∥LE∥K :=
maxO∈End(K) ∥LE(O)∥2/∥O∥2, where End(K) is the space of endomorphisms in K and ∥ · ∥2 is
the Euclidean norm. By definition, for finite systems this norm is bounded by the spectral
norm, i.e. ∥LE∥K ≤ ∥LE∥H ≡ ∥LE∥.

Then we can write our first result as the following theorem:

Theorem 1. For an arbitrary error model and a diagonalizable recovery map that satisfies
the assumptions in Eq. (7), the error rate is bounded by

ϵ(t), δ(t) ≤
Å
∆∥LE∥K

κ

ãℓ+1

Fℓ
(
κt
)
≤
Å
∆∥LE∥K

κ

ãℓ+1

κt ≡ ηℓ+1κt , (13)

where Fℓ(z) = zg(ℓ, z) − ℓg(ℓ + 1, z) ≤ z, and g(ℓ, z) is the regularized lower incomplete
Gamma function [54].
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Figure 2: Logical rate for generic qubit-based models. (a) The logical rate as a
function of the error radius for different values of the noise-to-recovery ratio r. The function
has a minimum for ℓmin = O(r0/r), the positions of the minima are shown as the dotted
black curve. (b) The minimum logical error rate ratio as a function of the noise-to-recovery
ratio, see Eq. (14).

To prove this result, we use Dyson’s perturbative expansion of the evolution superoperator
with ∆ as a small parameter. We show that the first ℓ perturbative terms in the series vanish,
and use a re-summation of the remaining terms to obtain a non-perturbative expression.
The proof can be found in Appendix B. Note that this result holds not only for finite-
dimensional systems, but also for certain (infinite-dimensional) bosonic systems where K is
a finite subspace.

For small values of κt ≪ 1, with all other parameters fixed, the error bound scales
as O((∆∥LE∥Kt)ℓ+1). This reflects the fact that, in this limit, the error is described by
perturbation theory and the lowest non-vanishing terms are of order ℓ + 1. In contrast, in
the non-perturbative regime κt ≫ 1, the logical error bound grows linearly and its rate is
proportional to ηℓ+1, where η = ∆∥LE∥K/κ. Therefore, this rate is exponentially suppressed
in ℓ if the noise is small enough that η < 1.

Let us analyze this suppression for certain multi-qubit codes for constant recovery rate
κ. In multi-qubit systems, the Lindblad operators have norm ∥LE∥K ≤ ∥LE∥ = cn, where
the dimensionless multiplication factor c reflects the rate of local error processes. One can
also find QLDPC codes whose radius is proportional to the number of qubits, such that
ℓ ≥ αn for some α < 1. As a result, the logical error rate is Γ := δ(t)/t ≤ (ℓr/r0)

ℓ+1κ,
where r = ∆/κ is a renormalized noise to recovery ratio and r0 = α/c. Unlike in active error
correction, the logical error rate bound does not become arbitrarily small for ever-increasing
ℓ. In fact, for small r ≪ 1, the bound has its minimum at ℓ ≃ r0/er, where e is the base of
the natural logarithm. This dependency is shown in Fig. 2(a). The minimum logical error
rate bound is

Γmin = O
Ä
κe−r0/r

ä
, r = ∆/κ. (14)

8



This is the minimum error rate bound for fixed κ. Therefore, we show that, for constant κ,
there exists a universal upper bound on the error rate that is sufficiently smaller than the
original error rate ∆ once r < r0. In this regime, a small improvement in the error rate ∆
yields, at least, an exponential improvement in the logical error rate bound, see Fig. 2(b).
This constitutes a universal “soft threshold” result applicable to arbitrary autonomous error-
correcting codes based on QLDPC codes.

Of course, we know that this bound is not tight: for some autonomous codes we can
have arbitrarily small errors for some ∆/κ below the threshold [20–22]. However, our result
suggests that, in general, to get such unbounded error reduction, we must have κ ∼ ∥LE∥,
i.e., growing with system size. In fact, by considering a particular example below in Section 4,
we show that this scaling condition cannot be relaxed in general.

3 Global decoders and a Poissonian error model

In this section, we derive tighter bounds than the generic-decoders bound in Eq. (13)
by focusing on global decoders in Eq. (8) and specializing to unitary error jump operators
(including Pauli noise). Such bounds allow for a better grasp of the capabilities of a recovery
rate κ that is sublinear in the number of qubits.

Let us consider a simplification of the quantum dynamics, given that error operators in
Eq. (2) that are unitary, E†

µEµ = I, where I is the identity matrix. We refer to this dynamics
as Poissonian as it maps directly to a Poissonian point process [55]. While this restriction
still covers generic Pauli noise for qubit, modular-qudit [56], and Galois-qudit codes [57,58],
it does not include processes such as photon loss or additive Gaussian white noise applicable
to bosonic codes.

Assuming Poissonian errors, we can rewrite the Lindblad equation in Eq. (9) as

d

dt
ρ = L(ρ) = γ

N∑
µ=0

pµ
(
Eµ(ρ)− ρ

)
, where Eµ(ρ) =

®
R(ρ) µ = 0

EµρE
†
µ µ > 0

, (15)

where γ = κ + N∆, p0 = κ/γ, and pµ>0 = λµ∆/γ. Notably, parameters pµ are positive,
satisfy the normalization condition

∑
µ pµ = 1, and can therefore be treated as probabilities.

The formal solution of Eq. (15) is obtained from the exponentiation of L, which takes
the form of a sum of multiple stochastic trajectories:

exp(Lt) = e−γt exp

(
γt

N∑
µ=0

pµEµ

)
=
∑
µ∈F

p(µ, t)Eµ , (16a)

where the set F includes trajectories µ of any length, including consequent errors and re-
coveries, and Eµ = Eµk ◦ · · · ◦ Eµ1 , where ◦ denotes the composition of superoperators (we
omit it below). The probability of a trajectory of error weight |µ| = k occurring at time t
has the form

p(µ, t) =
1

k!
(γt)ke−γtpµ1 . . . pµk , (17)

where probabilities pµ are defined below Eq. (15). It is easy to confirm that, for a given t, the
probabilities p(µ, t) for any time t sum to one. As a result, we can interpret the dynamics as
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a homogeneous Poisson point process, in which error and recovery events occur at random
times following a Poisson distribution with average spacing γ−1.

3.1 Asymptotic logical error estimate for Poissonian models

Using the Poisson picture, we can derive a bound on the logical error rate by counting how
many trajectories do not contribute to the logical error. First, we specify such trajectories
using the following definition.

Definition 1. We say that a trajectory µ = (µ1, . . . , µq) of weight q is faithful if it contains
no error subsequence of length m > ℓ, i.e. a subsequence {µk, . . . , µk+m−1} for 1 ≤ k ≤
q −m+ 1 such that all µk+i > 0.

In other words, faithful trajectories contain no uninterrupted error sequences of length
greater than ℓ. The total probability of faithful trajectories provides a lower bound on the
probability that no logical error occurs (see the lemma below).

In passing, it is important to note that in general not all trajectories that are not faithful
contribute to the logical error. For example, a sequence of more than ℓ Pauli errors does not
contribute to a logical error if it can be reduced to a weight less than ℓ by canceling identical
errors. However, since we are only aiming for an upper bound on the logical error, one can
exclude these trajectories from consideration and still keep the bound valid.

Let the full set of faithful trajectories be denoted by G. Then the logical error probability
is bounded as:

Lemma 1. For a Poissonian error process in Eq. (16), the error in Eq. (11) satisfies

ϵ(t) ≤ p(t) :=
∑

µ∈F\G

p(µ, t) , (18)

where F \G stands for trajectories that are not faithful.

The proof of this lemma can be found in Appendix C. This lemma allows us to derive the
upper bound on the logical error Eq. (18) by counting faithful trajectories. We exploit the
fact that errors and recoveries are independent stochastic processes. Then, for any trajectory
of time t, the probability of m recoveries is equal to R(m,κt), where R(m,x) := (κt)me−x/m!
(see Eq. (17)). The total probability of getting an non-faithful trajectory is given then by

p(t) = 1−
∞∑
m=0

R(m,κt)

∫ t

0

dt1π(t1|t)s(t1)
∫ t−t1

0

dt2π(t2|t− t1)s(t2)

· · ·
∫ t−t1···−tm−1

0

dtmπ(tm|t− t1 · · · − tm−1)s(tm)s(t− t1 · · · − tm),

(19)

where π(ti|t) is the probability that the time of the first recovery event in a random sequence
is ti conditioned on the total evolution time t, and s(ti) is the probability that the error
process during the interval [0, ti] does not result in an error weight larger than ℓ,

π(ti|t) =
κ exp(−κti)
1− exp(−κt)

, s(ti) =
ℓ∑

k=0

R(k,N∆ti). (20)
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In the asymptotic limit κt≫ 1, we can provide a (non-rigorous) estimate for the probabil-
ity in Eq. (19) by extending the upper limits of integration limits and conditioned evolution
times to infinity, as well as ignoring the contribution of the last term, which leads us to

p(t) ≈ 1−
∞∑
m=0

R(m, t)

(∫ ∞

0

dτπ(τ |∞)s(τ)

)m

= 1− exp(−∆efft), (21)

where the effective logical error rate is

∆eff =
κ(

1 + κ
N∆

)ℓ+1
. (22)

Let us examine the above expression from the standpoint of memory lifetime for multi-
qubit codes. Assuming that each qubit is subject to at least one type of error, the number
of elementary error processes grows with the number of qubits n, i.e. N = Θ(n).2 Using the
asymptotic behavior in Eq. (22), we then get the scaling (for a constant ∆):

∆eff =

®
κ exp(−Θ(κℓ/n∆)) κ = o(n),

κ( κ
n∆

)−Θ(ℓ) κ = Ω(n),
(23)

where all parameters, i.e. κ = κ(n), ℓ = ℓ(n), must be treated as functions of the number of
qubits n. For the case of the two-dimensional toric code [60], the radius satisfies ℓ = Θ(

√
n),

so the effective rate is suppressed in number of qubits if the recovery rate scaling satisfies
κ = ω(

√
n).

The result we presented above can be improved for certain families of codes and recovery
maps defined on n qubits. In this case, we can introduce an integer function h = h(n) to be
the tolerable error weight if the fraction of non-faithful trajectories of length |µ| ≤ h is at
most 2−Ω(d), where d is the code distance3. For all codes, error weights below error radius ℓ
are tolerable by definition. For a code family with a code capacity threshold 0 < fc < 1 [19],
the maximum tolerable error weight is given by h = ⌊fcn⌋, typically greater than error
radius (h ≥ ℓ). This allows us to improve the upper bound in Eq. (20) by replacing ℓ with
h, where h stands for any tolerable error weight, and taking into account the exponentially
small contribution in d coming from uncorrectable trajectories,

s(t) =
h∑
k=0

R(k,N∆t)− 2−Ω(d). (24)

This improvement grants us a stronger estimate for the logical error in the form

∆eff =
κ(

1 + κ
N∆

)h+1
+ 2−Ω(d). (25)

2Here and below we use the family of “big-O” Bachmann-Landau notations: o(f(x)) (dominated by
f(x)), O(f(x)) (bounded from above by f(x)), Θ(f(x)) (bounded from below and above by f(x)), Ω(f(x))
(bounded from below by f(x)), and ω(f(x)) (dominates f(x)). More about definitions can be found in
Ref. [59].

3For a more technical definition of the threshold and the tolerable error weight, we refer the reader to
Appendix D.
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In a similar fashion to the analysis in Eq. (23), if a code family has a tolerable weight
h > ℓ, we can use Eq. (25) to derive the bound

∆eff = κ exp
(
−Θ(κh/n∆)

)
+2−Ω(d), κ = o(n). (26)

For example, the toric code has a threshold error weight h = Θ(n), which leads us to the
error rate ∆eff ∝ exp(−Θ(κ/∆)). Thus, a constant κ yields a constant memory time, while
κ ∝ log(n) yields a polynomial memory time.

These results are non-perturbative in ∆, as perturbation theory would predict that the
logical error rate scales as order O(∆w) for some w ≥ 1. We demonstrate this difference
between our treatment and perturbation theory using the example of the toric code in
Section 5.

Our bounds on autonomous error correction may seem surprising when compared to
the standard scheme based on intermittent rounds of error-correcting recoveries. In the
standard scheme, it is sufficient to maintain a constant ratio between the single-qubit error
rate ∆ and a fixed inverse time T−1 between recoveries in order to achieve an exponential
lifetime. Indeed, if nT∆ < h, the probability of accumulating more than h errors becomes
exponentially small in n. The main difference between the two cases, stemming from our
interpretation of autonomous recovery as a stochastic process, is that the time T between
two consecutive recoveries is not fixed for the autonomous case and is instead determined by
the Poisson distribution. Due to this fact, even for large κ, the probability that n∆T > h is
constant as a function of system size, although it is exponentially small in κ/∆. Therefore,
increasing the system size alone does not increase the lifetime of the logical qubit.

3.2 All-time bound

In the previous section, we derived an asymptotic estimate for p(t) valid for κt ≫ 1.
In this section, we present a rigorous upper bound on p(t) and hence, by Lemma 1, on
the logical error probability. This bound is valid for all times t and is summarized by the
following Theorem.

Theorem 2. Consider a family of n-qubit error-correcting codes for increasing n. Each code
has a codespace C with code distance d = d(n), a Poissonian noise model {Eµ}, a recovery
map R and a tolerable error weight h = h(n). Then there exists a small parameter ξ = 2−Ω(d)

such that the logical error probability for the global decoder in Eq. (18), for any t ≥ 0, satisfies

ϵ(t) ≤ 1− exp

Ç
−(1− ξ)N∆

Å
N∆

κ+N∆

ãh
t− ξ(κ+N∆)t

å
. (27)

We define the tolerable error weight precisely and provide a proof of the theorem in Ap-
pendix D. Similar to the asymptotic estimate in Section 3.1, the proof utilizes the Poissonian
picture.4 It uses the fact that the dynamics of the system is an ensemble average over tra-
jectories where the single-shot recovery and the errors happen stochastically. Along a given

4It is worth noting that this bound holds for a more generic class of errors: instead of requiring E†
µEµ = 1

for all µ, the jump operators only have to satisfy
∑

µ E
†
µEµ = N . This class of errors also has the same

convenient properties as the Poissonian model (16). Thus, the bound also applies in situations involving non-
unitary errors such as those described by Pauli ladder operators σ± = (X± iY )/2, provided

∑
µ E

†
µEµ = N .
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Lemma 1 (num.)
Lemma 1 (est.)
Theorem 2

(a) (b)

Theorem 4

Figure 3: Comparing the bounds for a Poisson error model. The bounds on the
logical error ϵ(t) as a function of time for a code with radius ℓ = 6 and a recovery-to-noise
ratio κ = N∆ = 1. The plots compare numerically evaluated value of p(t) in Eq. (18) (solid
blue line) with its analytical asymptotic estimate in Eq. (21) (dashed black line), as well as
the all-time bound in Eq. (27) (dotted green line) and the bound in Eq. (31) (dash-dotted
red line). Panel (a) shows the linear scale, while panel (b) shows the logarithmic scale.

trajectory, the occurrence of a recovery event resets the system back to the codespace. If no
more than h errors take place between any such consecutive resets, the recovery is almost
guaranteed to send the system back to the correct codeword (up to a small failure rate ξ).
We can therefore obtain an upper bound for the logical error probability by lower bounding
the probability of trajectories consisting of only such faithful resets.

Consider an ideal recovery map that corrects only errors within the error radius, i.e. a
tolerable error weight h = ℓ and ξ = 0. It therefore follows that

ϵ(t) ≤ 1− exp

Å
− N∆t

(1 + κ/N∆)ℓ

ã
. (28)

Comparing this rigorous all-time bound to the asymptotic estimate in Eq. (22), the all-time
bound exceeds the estimate by a factor of 1 + N∆/κ. This upper bound is also shown in
Fig. 3.

Let us consider a particular class of Pauli-type noise models, where the Hermitian elemen-
tary error operators in Eq. (2) satisfy E2

µ = I and EµEµ′ = ±Eµ′Eµ for all µ, µ′. For example,
we can consider a noise model where, at each qubit, the error is described by the same single
Pauli jump operator, i.e. for a site i the error operator is Ei = cxXi + cyYi + czZi where
cx, cy, cz ∈ R and c2x+c

2
y+c

2
z = 1. Another Pauli-type model is depolarizing noise, where the

errors at each site i are described by three Pauli jump operators, E3i+1 = Xi, E3i+2 = Yi, and
E3i+3 = Zi, where i = 0, . . . , n − 1. The total number of error channels is given by N = n

13



and N = 3n in the first and the second examples, respectively. Because error operators
mutually commute or anticommute and their square is identity, two identical errors in the
sequence cancel the effect of each other leading to a slightly better logical error scaling.

Theorem 3. Under the conditions of Theorem 2 and for Pauli-type noise model, the logical
error in Eq. (18) satisfies

ϵ(t) ≤ 1− exp
(
−(1− ξ)N∆s1t− ξ(κ+N∆)t

)
, (29)

where s1 is the solution to the recurrence relation

sv =
v

N
p1sv−1 +

(
1− v

N

)
p1sv+1, s0 = 0, sh+1 = 1, (30)

with p1 = N∆/(κ+N∆).

The proof is similar to that of Theorem 2 and is given in Appendix E, where we also give
a precise definition for the tolerable error weight h for the Pauli-type noise. The recurrence
relation corresponds to a classical random walk, where a left or right move corresponds to
an application of an error operator that increases or reduces the weight of the resulting total
error5.

We analyze the recurrence relation in Eq. (30) numerically. In particular, we compute s1
for different κ and ∆, also varying N up to 107 (see Appendix E for the numerical results).
We have the following empirical observations:

1. For 0 < h/N < 1/2, we find that log s1 ∝ − κ
∆

for N ≫ 1.

2. For h/N = 1/2, we find that log s1 ∼ − κ
4∆

logN for N ≫ 1.

For generic codes satisfying h/N < 1/2, the Pauli-noise bound in Theorem 3 yields an
error rate lower than that of the general-noise bound in Theorem 2. In the special case
when h/N = 1/2, Theorem 3 predicts a memory lifetime that increases as Nκ/4∆−1 when
κ > 4∆. This case applies, for example, to the classical repetition code subject to the
single-qubit bit-flip noise or the surface code subject to only qubit-erasure noise [61] or only
Pauli-Y noise [62]. While the bound in Theorem 1 fails to capture it, Theorem 2 predicts
an unbounded lifetime as N → ∞ when κ > 4∆.

3.3 Logical error bound that is tight for early times

Applying the bound we found in Eq. (27) for early times indicates that ϵ(t) = O(t).
However, numerical simulations shown in Fig. 5 suggest that linear scaling is only relevant
at late times. Below, we establish a complementary bound ϵ(t) = O(tℓ+1) that confirms the
slower-than-linear growth at early times. This bound also applies to the trace distance δ(t).

5Here, we count the error weight after cancelling all the repeating errors in a jump trajectory described
by a string of elementary errors (Eq. (3)).
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Theorem 4. For Poissonian models in Eq. (16), the logical error rate is bounded as

ϵ(t), δ(t) ≤ 1

(1 + κ/N∆)ℓ+1
Fℓ

(
(κ+N∆)t

)
, (31)

where F (x) is defined in Theorem 1.

The proof of this result can be found in Appendix F. It follows the same steps as the
proof of Theorem 1, with a slightly different resummation procedure made possible by the
Poissonian error assumption. Since ∥LE∥ ≤ N for LE that consists of N independent
processes with unitary jumps, this yields a bound that improves on Theorem 1 by a factor
at most (1 +N∆/κ)ℓ+1 for the case of a Poissonian error model.

The result from Theorem 4 provides an accurate scaling for the logical error at early
times, while also capturing the error rate at later times. In the limit x→ 0, we observe the
scaling Fℓ(x) ∝ xℓ+1. On the other hand, when x ≫ 1, this function behaves as Fℓ(x) ∝ x.
This means that the error rate at early times grows as ϵ(t) ∝ (tN∆)ℓ+1 and saturates to a
linear rate. In the late-time regime, the logical error satisfies

ϵ(t) ≤
Å

N∆

κ+N∆

ãℓ+1

(κ+N∆)t =
N∆t

(1 + κ/N∆)ℓ
. (32)

Thus, this bound is consistent with the Taylor expansion of the bound in Eq. (28) if the
logical error rate is small. It is also illustrated in Fig. 3 along with the bounds we derived
previously.

4 Lower bound: qubit stabilizer codes

The above upper bounds on the logical error rate scale no faster than N exp(−cκ/∆) in
the recovery rate κ, saturating at exp(−c′κ/∆) when κt ≫ 1 (for some positive constants
c, c′). This leaves the possibility that, for some times, global decoders may be able to suppress
errors more efficiently. However, using the example of qubit stabilizer codes [2, 63] subject
to single-qubit Pauli errors, we show below that this is generally not the case. We derive a
lower bound on the error rate that decreases exponentially with the recovery-to-noise ratio
κ/∆, and is independent of the number of qubits n. In other words, it is impossible to reduce
the logical error rate to zero in the n→ ∞ limit while maintaining a constant recovery rate.

Our lower bound applies to single-qubit Pauli noise and logical-qubit stabilizer codes
with the following two additional natural features:

1. There exists a timescale after which the logical information gets corrupted with nonzero
probability. In other words, in the absence of recovery, the noise generates a nonzero
probability of a logical flip,

α(τ) := Tr
(
|1⟩⟨1|ReLκ=0τ |0⟩⟨0|

)
> 0 , (33)

for times τ > τc ∝ 1/∆, where Lκ=0 is the generator of noisy evolution without any re-
covery (κ = 0) and |w⟩ are the logical states. The threshold time τc is size-independent
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(a) (b)

Figure 4: Logical error after recovery for 2D toric code. Here, we put ∆ = 1 and
consider only bit-flip errors Eµ ≡ Xµ, where µ enumerates the physical qubits. We utilize
the recovery map R, based on the minimum-weight-matching algorithm (see Section 5 for
details). (a) The flip probability α(τ) in Eq. (33) in the absence of recovery (κ = 0) for
a different number of spins on a square lattice. Dots represent numerical data for the
L × L lattice (the total number of qubits n = 2L2 given in the legend), lines are smooth
interpolations. For times larger than τc ≈ 0.115, marked by a dashed line, the logical flip
probability is always nonzero, approaching the value of 0.5 for large codes. (b) Comparison
of the recovery probabilities for n = 32 qubits in two cases: (i) a single recovery at the
end, as given by the left-hand side of Eq. (34) (orange dots), and (ii) repeated recoveries, as
given by the right-hand side, for different times t (dotted curves) and different numbers of
recoveries m (white triangles, stars, and pentagons). For all parameters, repeated recoveries
in case (ii) perform better than applying the final recovery only in case (i).

and sets the timescale after which the logical information is no longer perfectly recov-
erable. For generic Pauli noise, the function α(τ) also depends on system size and is
assumed to satisfy limn→∞ α(τ) = 1/2 for τ > τc. This ensures that the noise model
is sufficiently powerful. In Fig. 4(a), we illustrate this property by plotting α(τ) for
different system sizes of the 2D toric code (see Section 5 for a definition). In this
plot, one can clearly observe the threshold time τc after which the logical state appears
highly mixed after the recovery map for any size of the code.

2. Interleaving the noise with more recovery operations is more effective. More technically,
the probabilities of recovery satisfy

Tr [|0⟩⟨0|ReLmt|0⟩⟨0|] ≤ Tr [|0⟩⟨0|
(
ReLt

)m |0⟩⟨0|] (34)

for any time t ≥ 0 and integer m ≥ 0. We illustrate this property in Fig. 4(b) for the
2D toric code. Specifically, we plot both the right-hand side and the left-hand side
of this inequality for different times t and integers m. Notably, this inequality holds
even at times t > τc, when the average probability of errors for each physical qubit
exceeds the code threshold. While we do not generally expect good performance from
the decoder in this case, the toric code demonstrates some improvement even above
the threshold.
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Given these assumptions, we can show the existence of the minimal logical error rate.
To do so, let us first consider the logical bit-flip probability in the presence of the recovery
process. Let F (0) be the subset of trajectories without any recovery events (i.e., the κ = 0
case only), a subset of all possible trajectories F . From the Poissonian picture in Eq. (16),
we derive that

Tr [|1⟩⟨1|ReLτ |0⟩⟨0|] = Tr [|1⟩⟨1|R

(∑
µ∈F

p(µ, τ)Eµ

)
|0⟩⟨0|]

≥ Tr [|1⟩⟨1|R

Ñ ∑
µ∈F (0)

p(µ, τ)Eµ

é
|0⟩⟨0|]

= Tr [|1⟩⟨1|R

Ñ ∑
µ∈F (0)

p(µ, τ)

éÑ ∑
µ∈F (0)

p(µ, τ)∑
µ′∈F (0) p(µ′, τ)

Eµ

é
|0⟩⟨0|]

= e−κτTr [|1⟩⟨1|ReLκ=0τ |0⟩⟨0|] ≥ α(τ)e−κτ , (35)

indicating a non-vanishing error probability in the thermodynamic limit. Here, we used the
normalization ∑

µ∈F (0)

p(µ, τ) =
∞∑
k=0

Å
N∆

κ+N∆

ãk [τ(κ+N∆)]k

k!
e−τ(κ+N∆) = e−κτ . (36)

Using Eq. (34), we then lower bound the logical error measure by considering the dynamics
interleaved with the recovery map at every time interval of length τ .

Let the parity superoperators be X (ρ) = X̄ρX̄ and Z(ρ) = Z̄ρZ̄, where X̄ and Z̄ are
the logical operators. For stabilizer codes, these operators are Pauli strings that commute
with the stabilizers. Also, the recovery R can be written in terms of projectors onto Pauli
stabilizer configurations followed by Pauli strings that fix the stabilizer configuration (see
Section 5 for an explicit expression). These superoperators satisfy [R,X ] = [R,Z] = 0.
Similarly, for Pauli errors Eµ>0, we have

XEµ(ρ) = X (EµρEµ) = EµX (ρ)Eµ = EµX (ρ) , (37)

and similarly for X → Z. As a result, the parity operators are conserved during the dynam-
ics, i.e. [X , eLt] = [Z, eLt] = 0.

To analyze the logical error rate of our system, we limit our attention to the initial
state |0⟩⟨0|. This state is an eigenvector of the parity operator Z with eigenvalue +1. Its
eigenvalue is a good quantum number with respect to the noise, meaning that no off-diagonal
matrix elements (such as |0⟩⟨1|) will be created during the evolution. Combining this with
Eq. (35) for sufficiently large n, we have

ReLτ |0⟩⟨0| = p0|0⟩⟨0|+ p1|1⟩⟨1|, α(τ)e−κτ ≤ p1 ≤
1

2
, (38)

where p0 = 1− p1. By applying X to both sides of Eq. (38), we learn that

ReLτ |1⟩⟨1| = p0|1⟩⟨1|+ p1|0⟩⟨0|. (39)
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Using simple linear algebra, we find:(
ReLτ

)m |0⟩⟨0| =
Å
1

2
+ (1− 2p1)

m

ã
|0⟩⟨0|+

Å
1

2
− (1− 2p1)

m

ã
|1⟩⟨1|. (40)

This yields

Tr [|0⟩⟨0|R
(
eLτR

)m |0⟩⟨0|] ≤ 1

2
+

1

2
(1− 2α(τ)e−κτ )m. (41)

For a total time t = mτ , we use Eq. (34) from Assumption 2 and arrive at the following
bound,

1

2
− 1

2
(1− 2α(τ)e−κτ )t/τ ≤ 1− Tr [|0⟩⟨0|ReLt|0⟩⟨0|] ≤ ϵ(t). (42)

To make this bound comparable to previous results, we rewrite this inequality as ϵ(t) ≥
1
2
(1− exp(−∆eff(t)t)), where the effective logical error rate is

∆eff(t) := −1

t
log(1− 2ϵ(t)) ≥ −1

τ
log(1− 2α(τ)e−κτ ) ≈ 2α(τ)

τ
e−κτ , (43)

The approximation in the last step is valid if α(τ)e−κτ ≪ 1. According to Assumption
1, the flip probability satisfies limn→∞ α(τ) = 1/2 for all τ > τc = f ′/∆, where f ′ is a
constant. Therefore, the effective error rate ∆eff is Ω(∆e−f

′κ/∆) as the thermodynamic limit
is approached. This result shows that the lower bound on the logical error rate decreases
exponentially as a function of the ratio between the recovery rate and the error rate. However,
it also follows that, under the assumptions in Eqs. (33,34) (which we verified for the 2D toric
code but expect to hold more generally), it is impossible to obtain a quantum memory
with either an exponential or polynomial lifetime using only a constant recovery rate. Some
careful readers may notice that Theorem 3 suggests that the repetition code subject to a
single type of Pauli noise has a memory lifetime that grows polynomially with system size.
This does not contradict the lower bound. One can verify numerically that Assumption 1 is
violated by the repetition code, i.e., the timescale τc for logical information corruption under
purely noisy dynamics grows with system size.

5 Examples of autonomous codes

Finally, we provide a few examples of autonomous codes generated from global decoders
of existing quantum codes. We start with qubit stabilizer codes. Our global recoveries are
different from local decoders [21,22,65,66] in that jump operators of the latter apply recovery
steps only on geometrically restricted regions.

The codespace C of an [[n, 1, d]] stabilizer code is formed by the +1 eigenstates of n− 1
mutually commuting Pauli operators Sα that satisfy S2

α = I, [Sα, Sβ] = 0 for all α, β. The
traditional recovery map includes two steps. In the first step, we measure all stabilizer
generators Sα, projecting the state into a subspace of mutual eigenstates with corresponding
eigenvalues sα = ±1. This procedure is equivalent to applying a projection operator

P (s) =
n−1∏
α=1

1

2

(
1 + sαSα

)
. (44)
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(a) (b)

4

Figure 5: Stabilizer codes. (a) Logical error measure ϵ(t) for the five-qubit code and the
corresponding upper bound in Eq. (31). (b) The same logical error measure for the two-
dimensional toric code on a L×L lattice of linear sizes L = 4 (blue), 6 (red), and 8 (green),
assuming the minimum-weight-matching algorithm has the threshold h ≈ 0.1031n [64]. The
recovery rate grows linearly with the number of qubits, κ = 0.1n. The inset shows the same
plot in logarithmic scale on the y-axis.

Next, we apply the corresponding recovery unitary C(s), which is a product of individual
Pauli operators, depending on the (n − 1)-dimensional vector of outcomes s = {sα}. We
can make a decision on the recovery using an algorithm or simply a lookup table that pairs
every stabilizer configuration with its corresponding recovery.

In the autonomous regime, we propose to implement these recoveries using the continuous
process, which combines both procedures:

R(ρ) =
∑

s∈Zn−1
2

AsρA
†
s, (45)

where the jump operators are defined as

As = C(s)P (s) = PC(s). (46)

Here P is the projector onto the codespace, and the last equality follows from the fact that
C(s) commutes (anticommutes) with the stabilizer Sα if sα = 1 (−1):

C(s)
n−1∏
α=1

1

2

(
1 + sαSα

)
=

n−1∏
α=1

1

2

(
1 + Sα

)
C(s) = PC(s). (47)

For these stabilizer recovery models, we use simplistic Pauli error operators Eµ ∈ {Xi, Yi, Zi}
in Eq. (2), which act with the same rate ∆ on each qubit i (i.e., we set all λµ = 1).

In the simplest example, we consider an autonomous stabilizer decoder based on a five-
qubit code. This distance d = 3 code protects one logical qubit using five physical qubits
and is stabilized by four operators Sα ∈ {XZZXI, IXZZX,XIXZZ,ZXIXZ}, where I,
X, and Z are respectively the identity and the X- and Z-Pauli operators acting on the
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(a) (b)

Figure 6: Binomial code. (a) The error probability ϵ(t) in Eq. (11) for the binomial code
in Eq. (51) with different values of ℓ = 1, 2, 3 using the parameters κ = 1, ∆ = 10−3. The
dots show numerical results (obtained for finite-size Hilbert space approximation), the curves
show the fit of the form ϵ(t) = (cℓ∆)ℓ+1F (κt) (compare to the result in Theorem 1), where
c1 = 2.57, c2 = 9.50, and c3 = 28.2. (b) The dots show the saturated error rate for different
values of ℓ as a function of ∆. The curves show the asymptotics of the form ϵ(t) = (c′ℓ∆)ℓ+1t,
where c′1 = 2.57, c′2 = 9.51, and c′3 = 28.54. This agrees with the theoretical bound in Eq. (13)

when taking into account that ∥LE∥K ≥ Cℓ > cℓ, c
′
ℓ, where Cℓ :=

√
Tr
Ä
|0⟩⟨0|L†

ELE|0⟩⟨0|
ä
,

|0⟩ is ℓ-dependent codeword in Eq. (51), and C1 ≈ 6.50, C2 ≈ 24.5, and C3 ≈ 61.0.

corresponding qubit of the system. We illustrate the performance of this code in Fig. 5(a).
As can be seen from the figure, the upper bound in Eq. (31) accurately describes the error
rate in such a model.

Another relevant example is the two-dimensional toric code. This code is defined on
a two-dimensional square lattice with L × L plaquettes and periodic boundary conditions,
where physical qubits are situated on the edges. The stabilizers are divided into two groups.
One group includes all products of four Z operators acting on edges s adjacent to a vertex
(“stars”), which we denote as As =

∏
i∈s Zi. The other group consists of all products of X

operators acting around a square p (“plaquettes”), which we denote as Bp. The codespace
consists of the ground states of the operator

H = −
∑
s

As −
∑
p

Bp. (48)

Using measurements of each group of stabilizers separately, it is possible to independently
correct errors in the X and Z bases even if both of them are present in the system. To con-
struct the recovery operator R, we use the minimum-weight-matching algorithm [64], which
suggests the recovery unitary C(s) for each vector of measurement outcomes s. We compare
the rate of logical error with the prediction given by the upper bound from Theorem 2. In
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particular, Fig. 5(b) shows how the logical error depends on the linear size L of the lattice.
It can be seen that the upper bound correctly predicts the performance of the code.

Additionally, we compare our results with the predictions of perturbation theory for the
autonomous toric code model. First, we find the solution of the spectral problem exactly
for a Lindbladian with no noise (∆ = 0). This solution has a 42-dimensional steady-state
manifold that is separated by a dissipative gap κ from the rest of the eigenstates. The steady
states are superpositions of four toric-code ground states. The rest of the eigenstates have
the same eigenvalue κ. Using this exact solution, we use perturbation theory to determine
how the eigenvalues of steady states are perturbed by noise. The real part of the lowest-order
perturbation can be used as an estimate of the logical error rate.

Notably, as we show in Appendix H, when κ is a system-size independent constant, the
leading-order contribution from perturbation theory diverges as L approaches infinity. If
the recovery rate scales with L as κ = κ0L for some constant κ0 > 0, the leading-order
contribution from perturbation theory scales as

ϵ(t) = O

Ç
κ0tL

2

Å
2∆

eκ0

ãL/2å
(49)

in the limit L→ ∞. This still provides a better estimate than that for the general recovery
process in Theorem 1, which requires κ ∼ L2 to ensure exponential suppression of the logical
error rate. As a comparison, we can apply the asymptotic result obtained in Section 3.1 to
the autonomous toric code by setting N = n = 2L2 and h = 2fL2 for some constant f > 0
that indicates the finite threshold of the toric code. The error rate given by Eq. (25) is

ϵ(t) = O
Ä
κ0tLe

−fκ0L/∆
ä
, (50)

which suggests a non-perturbative contribution at ∆ = 0. Indeed, we see that, although the
perturbation result does capture the exponential suppression of the error rate as L approaches
infinity, for small ∆ it overestimates the error rate compared to the asymptotic behaviour.
This example highlights the importance of non-perturbative approaches in estimating the
memory lifetime for an autonomous error-correcting code.

Finally, we consider an example of a code that cannot be understood in terms of Pauli
errors. An example of such a code is the binomial code [67] defined for the space of a quantum
harmonic oscillator, H = {|n⟩B, n ≥ 0}. The transitions between quantized oscillator levels
are induced by the creation operator a† and the annihilation operator a such that a†|n⟩B =√
n+ 1|n + 1⟩B and a|n⟩B =

√
n|n − 1⟩B. The codewords of the binomial code of distance

d = 2ℓ+ 1 are

|0⟩, |1⟩ = 1

2ℓ

[0,2ℓ+1]∑
s∈even,odd

√Ç
2ℓ+ 1

s

å
|s(2ℓ+ 1)⟩B. (51)

The binomial code tolerates single-photon processes as well as dephasing, with elementary
errors generated from the set Eµ ∈ {a, a†, a†a}, where weights λµ = 1/3 are the same for each
channel type in Eq. (2). The recovery map R is defined using the procedure in Appendix
A. Fig. 6 shows that the logical error rate of the code decreases exponentially with the code
radius, for different values of ℓ.
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6 Summary and outlook

We derived the universal dependence of the logical error of a global quantum decoder on
error model parameters. Under general assumptions, we found that global decoders provide
viable error suppression. We also developed criteria under which the lifetime of the memory
can be extended indefinitely by increasing the system size. To achieve this, decoders must
operate at a rate that grows with system size. While this growth can be mild—polynomial
suppression can be achieved with logarithmic rates—it shows that a constant dissipative gap
of the recovery procedure is not sufficient to ensure a quantum memory whose lifetime grows
indefinitely with system size. It also means, contrary to what one might naively imagine, that
autonomous decoders cannot be perceived or constructed as stochastic versions of traditional
error correction protocols. In fact, the structure of the correction map (e.g., represented by
Kt in Eq. (6)) plays an important role in existing autonomous decoders [21].

Another motivation for studying non-local dissipative processes is to see if they exhibit
threshold-like behavior. While we do not generally observe sharp features like this in our
analytical analysis of Poissonian models, it is possible that a transition could occur for a
more general type of noise model that becomes weaker as system size increases.

In the future, we could use similar techniques to study local decoders. For example,
we could try to prove analytically that there is a threshold for autonomous models based
on existing cellular-automata decoders such as sweep-rule decoders [68] or local decoders
motivated by the thermalization of physical Hamiltonians [22].
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Appendices

Appendix A: Recovery map and error measures

In this appendix, we show how the map R in Eq. (6) can be constructed explicitly for a
given quantum code. We also show the connections between two error measures introduced
in Eqs. (10) and (11).

We start by explicitly constructing the recovery map and proving some of its properties.
To do so, we first consider the error operators Fα =

∑
ν u

∗
ανKν , where uαν are matrix

elements of the unitary u that diagonalizes the matrix C in Eq. (4), i.e. C = u†Ĉu, where
Ĉ = diag{dα}. The action of these operators is orthogonal in the codespace, i.e.

PF †
αFβP = dαδαβP, (52)

where P is the projector to the codespace C and dα are eigenvalues of C. We will only
consider independent operators with dα > 0. Next, we can use the polar decomposition

FαP = Uα

»
PF †

αFαP =
√
dαUαP, (53)

where Uα are unitary operators. Then, we can construct the recovery map as

R(ρ) =

D0∑
α=1

RαρR
†
α +

1

2
Tr (ρP⊥)P Rα = PU †

α, (54)

where P⊥ = I−
∑

αR
†
αRα is the projector on the sector of “undecidable” error states created

by acting on the codespace by errors that violate Knill-Laflamme condition. Here, Rα are
Kraus operators that satisfy the property

RαRβ = PU †
αPU

†
β =

1√
dα
PF †

αPU
†
β = δα0Rβ, (55)

where F0 = I and d0 = 1. This form of recovery map is not the most general one, as one
could advise a better code-specific map that addresses undecidable states. For the sake of
simplicity, however, we limit ourselves to the simple map presented above.

Using the relation in Eq. (55), we can show that the recovery map is an idempotent
operation, i.e.

∀ρ : R2(ρ) =

D0∑
αβ=1

RαRβρR
†
βR

†
α +

1

2
Tr (ρP⊥)P = R(ρ). (56)

Finally, using the structure of the Kraus operators in Eq. (54), we can derive its action on
error states as

∀ρ ∈ L(C) : R(FαρF
†
β) =

∑
γ

PU †
γFαρF

†
βUγP =

∑
γ

1

dγ
PF †

γFαPρPF
†
βFγP, (57)
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where L(C) is the space of linear operators on the codespace C. Using the Knill-Laflamme
condition, we get the expression

∀ρ ∈ L(C) : R(FαρF
†
β) =

∑
γ

dγδαγδβγρ = dαδαβρ. (58)

Transforming back to the error basis consisting of individual errors, we get

∀ρ ∈ L(C) : R(KµρK
†
ν) = Cνµρ. (59)

This relation is important: we will use it for proving the properties of the recovery map in
Appendix B.

Next, we present a proof of the relationship between the trace distance and the fidelity
measures of logical error, defined in Eqs. (10) and (11). In particular, we show that

δ(t) ≤ 2ϵ(t). (60)

The first step is to utilize Holder’s inequality, namely

T (exp(Lt)ρ0, exp(Lt)ρ⊥0 ) ≥
1

2
Tr (Q exp(Lt)δρ0), (61)

where δρ0 = ρ0−ρ⊥0 , and Q is any Hermitian operator of unit spectral norm. It is convenient
to choose Q = R†δρ0, where R† is the adjoint to the recovery operator R. Then

T (exp(Lt)ρ0, exp(Lt)ρ⊥0 ) ≥
1

2
Tr (δρ0R exp(Lt)δρ0)

= Tr (ρ0R exp(Lt)ρ0) + Tr (ρ⊥0 R exp(Lt)ρ⊥0 )− 1,
(62)

where we use that ρ0 + ρ⊥0 = IC , IC acts as identity within the codespace and zero outside
of it. Incorporating this inequality into the definition of δ(t), we get

δ(t) ≤ 2−min
ρ0

(
Tr (ρ0R exp(Lt)ρ0) + Tr (ρ⊥0 R exp(Lt)ρ⊥0 )

)
≤ 2
(
1−min

ρ0
Tr (ρ0R exp(Lt)ρ0)

)
= 2ϵ(t).

(63)

This concludes our proof.

Appendix B: Proof of Theorem 1

This appendix contains the proof of Theorem 1. In the first step of the proof, we show
that the error measures in Eqs. (11) satisfy

ϵ(t), δ(t) ≤ 1− 1

2
min
ρ0

Tr (Q exp(Lt)δρ0), (64)

where δρ0 = ρ0 − ρ⊥0 and Q = R†δρ0, similar to the notation we used in Appendix A. The
inequality for δ(t) follows directly from its definition in Eq. (10) and the property in Eq. (61).
To prove this inequality for ϵ(t), we notice that

1

2
min
ρ0

Tr (Q exp(Lt)δρ0) = min
ρ0

(
Tr (ρ0R exp(Lt)ρ0) + Tr (ρ⊥0 R exp(Lt)ρ⊥0 )

)
−1

≤ min
ρ0

Tr (ρ0R exp(Lt)ρ0) = 1− ϵ(t),
(65)
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where we used the fact that Tr (ρ⊥0 R exp(Lt)ρ⊥0 ) ≤ 1. This expression leads us to the
inequality in Eq. (64) for ϵ(t).

Next, it is convenient to switch to the imaginary frequency space t → s and write this
inequality using the inverse Laplace transform L −1 as

ϵ(t), δ(t) ≤ 1− 1

2
min
ρ0

L −1

[
Tr

Å
Q

1

s− L
δρ0

ã]
. (66)

To further analyze this expression, we use the decomposition L = κLR + ∆LE, where LE
and LR are defined in Eqs. (2) and (5), respectively. With error rate ∆ as a small parameter,
we are using Dyson’s series

1

s− L
=

1

s− κLR

∞∑
r=0

(
∆LE

1

s− κLR

)r
. (67)

To simplify calculations, we can use diagrammatic notation to represent different superop-
erators. We introduce the following notation:

Q⊗ I ≡ ,
1

s− L
≡ ,

1

s− κLR
≡ , ∆LE ≡ ,

1

2
Tr (Oδρ0) ≡ ⟨O⟩.

(68)
Using this notation, the Dyson’s series in Eq. (67) can be expressed as an infinite sum of
diagrams,

= + + + + . . . . (69)

At the same time, the error expression in Eq. (66) takes the diagrammatic form

ϵ(t), δ(t) ≤ 1− 1

2
L −1Tr

Å
Q

1

s− L
δρ0

ã
= 1− L −1

〈 〉
. (70)

Using Dyson’s expansion and the diagrammatic representation, we can now rewrite the term
on the right as 〈 〉

=
〈 〉

+
〈 〉

+
〈 〉

+
〈 〉

+ . . . . (71)

It can be further simplified once we take into account the fact that recovery dynamics
preserves the states in the codespace, which means LRδρ0 = 0. Therefore,

1

s− κLR
δρ0 =

1

s
δρ0. (72)

This property allows us to rewrite〈 〉
=

1

s
+

1

s

〈 〉
+
1

s

〈 〉
+
1

s

〈 〉
+ . . . . (73)

Next, we use the decomposition

exp(κLRt) = Wt +
(
1− e−κt

)
R, (74)
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where we defined Wt := e−κtKt. In the space of imaginary frequencies, the same expression
takes the form

1

s− κLR
= Ws +

κ

s(s+ κ)
R, Ws = LWt. (75)

This expression can also be written in diagrammatic form

= + ,
κ

s(s+ κ)
R = , Ws = . (76)

Now let us consider the terms from the second to the ℓth (containing k operators LE, where
1 ≤ k ≤ ℓ), and rewrite each of them in the following form:〈

. . .︸ ︷︷ ︸
0 < k ≤ ℓ

〉
=⟨ . . .︸ ︷︷ ︸

k

⟩+ ⟨ . . .︸ ︷︷ ︸
k

⟩

+ ⟨ . . .︸ ︷︷ ︸
k − 1

⟩+ · · ·+ ⟨ . . .︸ ︷︷ ︸
k − 1

⟩.
(77)

The right-hand side of this equation contains k + 2 terms. Our goal is to show that the
right-hand side of this expression vanishes. We do so by using the following Lemma.

Lemma 2. For any k satisfying 0 < k ≤ ℓ and any superoperator O, we have
〈
O . . .︸ ︷︷ ︸

k

⟩ =

0 and
〈
O . . .︸ ︷︷ ︸

k

⟩ = 0.

Proof. To prove this statement, we first write the diagram in symbolic form:

〈
O . . .︸ ︷︷ ︸

k

〉
≡ ∆k

2
Tr (ORLE(WsLE)k−1δρ0),

〈
O . . .︸ ︷︷ ︸

k

〉
≡ ∆k

2
Tr (ORWsLE(WsLE)k−1δρ0).

(78)

Next, we express the action of the Lindblad generators in a more explicit form:

LE(WsLE)k−1ρ =
∑

µ,µ′∈MC

aµµ′KµρK
†
µ′ ,

WsLE(WsLE)k−1ρ =
∑

µ,µ′∈MC

bµµ′KµρK
†
µ′ ,

(79)

whereMC is the set of all correctable error sequences, and aµµ′ , bµµ′ are certain real numbers,
and we used the fact that Ws does not increase the number of errors. It is important to note
that, as the action of any Linbladian operator must return traceless operators and the map
Ws preserves the trace, these operators must satisfy

∀ρ, k > 0 : Tr (LE(WsLE)k−1ρ) = 0, Tr (WsLE(WsLE)k−1ρ) = 0. (80)
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For any ρ, these conditions are satisfied if and only if∑
µ,µ′∈MC

aµµ′K†
µ′Kµ = 0,

∑
µ,µ′∈MC

bµµ′K†
µ′Kµ = 0. (81)

Now we can express the portion of the expression inside the trace in Eq. (78) using the
property of the recovery operator in Eq. (59):

RLE(WsLE)k−1δρ0 =
∑

µ,µ′∈MC

aµµ′R(Kµδρ0K
†
µ′)

= δρ0
∑

µ,µ′∈MC

aµµ′Cµ′µ = δρ0
∑

µ,µ′∈MC

aµµ′⟨0|K†
µ′Kµ|0⟩ = 0.

(82)

Similarly,

RWsLE(WsLE)k−1δρ0 =
∑

µ,µ′∈MC

bµµ′R(Kµδρ0K
†
µ′)

= δρ0
∑

µ,µ′∈MC

bµµ′Cµ′µ = δρ0
∑

µ,µ′∈MC

bµµ′⟨0|K†
µ′Kµ|0⟩ = 0.

(83)

Thus, both expressions in Eq. (78) vanish and this leads to the statement of the Lemma.

As a result of this Lemma, all terms on the right-hand side of Eq. (77) vanish immediately.
To show that the first term must vanish, we can use the definition of the operator Q below
Eq. (64) and rewrite

⟨ k⟩ = ⟨(δρ0 ⊗ I) . . .︸ ︷︷ ︸
k

⟩. (84)

Therefore we have 〈
. . .︸ ︷︷ ︸

0 < k ≤ ℓ

〉
= 0.

(85)

Following the removal of the vanishing terms, we obtain the series〈 〉
=

1

s
+

1

s

〈
. . .︸ ︷︷ ︸
ℓ+ 1

〉
+
1

s

〈
. . .︸ ︷︷ ︸
ℓ+ 2

〉
+
1

s

〈
. . .︸ ︷︷ ︸
ℓ+ 3

〉
+ . . . . (86)

This expression can be compacted again using Eq. (69) to obtain〈 〉
=

1

s
+

1

s

〈
. . .︸ ︷︷ ︸
ℓ+ 1

〉
. (87)

The rest of the proof uses this expression iteratively. As the first step, we rewrite Eq. (87)
as 〈 〉

=
1

s
+

1

s

〈
. . .︸ ︷︷ ︸
ℓ

〉
+
1

s

〈
. . .︸ ︷︷ ︸
ℓ

〉
. (88)
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The last term vanishes as a result of Lemma 2, and, as a second step, we rewrite the remaining
terms as 〈 〉

=
1

s
+

1

s

〈
. . .︸ ︷︷ ︸
ℓ

〉
=

1

s
+

1

s

〈
. . .︸ ︷︷ ︸
ℓ

〉
. (89)

We repeat these two steps ℓ− 1 more times to get〈 〉
=

1

s
+

1

s

〈
. . .︸ ︷︷ ︸
ℓ+ 1

〉
. (90)

We can derive a bound on the last term of this expression using

L −11

s

〈
. . .︸ ︷︷ ︸
ℓ+ 1

〉
=

∆ℓ+1

2
T
∫
dt1 . . . dtℓ+2Tr

(
QeL(t2−t1)LEWt3−t2 . . .Wtℓ+2−tℓ+1

LEδρ0
)

≥ −(∥LE∥K∆)ℓ+1T
∫
dt1 . . . dtℓ+2∥eL(t2−t1)∥∥Wt3−t2∥ . . . ∥Wtℓ+2−tℓ+1

∥

= −(∥LE∥K∆)ℓ+1L −1

{
1

s2(s+ κ)ℓ

}
,

(91)

where we defined the time-ordered exponential as

T
∫
dt1 . . . dtk =

∫ t

0

dt1

∫ t1

0

dt2· · ·
∫ tk−1

0

dtk, (92)

used that the spectral norms of the operators and superoperators yield

∥Q∥ = 1, ∥eLt∥ = 1, ∥Wt∥ = e−κt∥Kt∥ = e−κt. (93)

Therefore, we arrive at the expression

L −1
〈 〉

≥ 1− (∥LE∥K∆)ℓ+1L −1

{
1

s2(s+ κ)ℓ

}
. (94)

Performing inverse Fourier transform, we finally get

ϵ(t), δ(t) ≤ 1− L −1
〈 〉

≤
Å∥LE∥K∆

κ

ãℓ+1

F
(
κt
)
. (95)

This expression concludes our proof.

Appendix C: Proof of Lemma 1

This appendix contains the proof of Lemma 1. To express the logical error, we first
consider the trajectory decomposition in Eq. (16). This allows us to derive the bound

ϵ(t) = 1−min
ρ0

∑
µ∈F

p(µ, t)Tr
(
ρ0REµρ0

)
= max

ρ0

∑
µ∈F

p(µ, t)
(
1− Tr

(
ρ0REµρ0

))
≤ max

ρ0

∑
µ∈F

p(µ, t)Θ
(
1− Tr

(
ρ0REµρ0

))
,

(96)
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where the minimization/maximization is over pure states ρ0 in the codespace C, and Θ(x)
is the Heaviside step function (defined as Θ(x) = 0 for x < 0 and Θ(x) = 1 for x ≥ 0). We
also used the property that Θ(x) ≥ x for x ∈ [0, 1].

Next, we use the definition of faithful trajectory µ ∈ G and express

∀µ ∈ G : REµρ0 = REµRρ0 =

(∏
m

(REµmR)

)
ρ0, (97)

where µm are error subsequences. For any state ρ, we have

REµmR(ρ) = R(EµmR(ρ)E†
µm

) = CµmµmR(ρ) = ⟨0|E†
µm
Eµm |0⟩R(ρ) = R(ρ), (98)

where we used Eq. (59) and the fact that the sequence µm has weight smaller than the radius
ℓ and, thus, satisfies Knill-Laflamme condition. Thus, for any faithful trajectory we have

REµρ0 = R(ρ0) = ρ0. (99)

Finally, using the fact that extremum over ρ0 is taken over a pure states, we get

∀µ ∈ G : Tr
(
ρ0REµρ0

)
= Tr ρ20 = 1. (100)

Combining this expression and the definition of the Heaviside function, we find from
Eq. (96) that

ϵ(t) ≤ max
ρ0

∑
µ∈F\G

p(µ, t)Θ
(
1− Tr

(
ρ0Eµρ0

))
+max

ρ0

∑
µ∈G

p(µ, t)Θ
(
1− Tr

(
ρ0Eµρ0

))
. (101)

The last term vanishes due to Eq. (100). Taking into account the fact that Θ(x) ≤ 1, we get

ϵ(t) ≤
∑

µ∈F\G

p(µ, t). (102)

This concludes our proof.

Appendix D: Proof of Theorem 2

This appendix contains the definition of the threshold and the proof of Theorem 2. For
the purposes of this appendix, we adopt the following definition of the threshold for an
n-qubit quantum error-correcting code:

Definition 2. Consider a family of n-qubit error-correcting codes for increasing n. Each
code has a codespace C, code distance d = d(n), an error channel E and a recovery map R.
We say that the code family has a tolerable error weight h if h = h(n) is an integer-valued
function such that, for any |ψ⟩ ∈ C and non-negative integer k ≤ h, the following inequality
holds:

REk
(
|ψ⟩⟨ψ|

)
−(1− ξ)|ψ⟩⟨ψ| ≥ 0, (103)

where ξ = 2−Ω(d) is independent of |ψ⟩. Let G be the set of all possible constants f such that
h(n) = ⌊fn⌋ is a tolerable error weight. We say that the code family has a threshold fc if
fc = supG > 0.
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The inequality in Eq. (103) means that the eigenvalues of the operator on the left side of
the inequality are non-negative. SinceREk is a quantum channel, this inequality is equivalent
to the statement REk|ψ⟩⟨ψ| = (1−ξ)|ψ⟩⟨ψ|+

∑
i pi|ψi⟩⟨ψi| for some |ψi⟩ ∈ C and pi ≥ 0 that

satisfy
∑

i pi ≤ ξ. In other words, for any initial logical state, the error occurs with ξ-small
probability. By this definition, an n-qubit code with a threshold can recover the encoded
quantum information with arbitrary precision, even if it is subjected to a large number of
k ≤ h error channel rounds. Examples of error-correcting codes that can withstand uniform
single-qubit Pauli noise include the repetition code and many quantum stabilizer codes such
as the toric code and color codes.

Recall that, for a Poissonian noise channel, the error jump operators satisfy
∑N

µ=1E
†
µEµ =

NI. The Lindbladian can be written in a similar form as Eq. (16)

Lρ = d

dt
ρ = κ (R(ρ)− ρ) + ∆

N∑
µ=1

Å
EµρE

†
µ −

1

2
E†
µEµρ−

1

2
ρE†

µEµ

ã
= (κ+N∆) (p0 (E0(ρ)− ρ) + p1 (E1(ρ)− ρ)) , (104)

where the recovery E0 = R and the error process E1(·) = 1
N

∑
µEµ(·)E†

µ have probabilities

p0 =
κ

κ+N∆
and p1 =

N∆
κ+N∆

, respectively. Using a Taylor expansion, we get

exp(Lt) = e−(κ+N∆)t exp

Ñ
(κ+N∆)t

∑
µ∈{0,1}

pµEµ

é
=

∞∑
k=0

P(k)
(t(κ+N∆))k

k!
e−t(κ+N∆),

(105)
where the channel P(k) is defined as P(k) = (p0E0+p1E1)k =

∑
{a} pa1pa2 · · · pakEa1Ea2 · · · Eak

and {a} is a set of all possible binary (jump) sequences of length k with ai ∈ {0, 1} labeling
the recovery and error channels. This is an alternative form of Eq. (16). Using the definition
of the error measure ϵ(t) [Eq. (11)], we find that, for an initial pure state ρ0 in the codespace,
we have

ϵ(t) =
∞∑
k=0

pe(k)
(t(κ+N∆))k

k!
e−t(κ+N∆), (106)

where pe(k) = 1−minρ0
∑

{a} pa1pa2 · · · pakTr [ρ0REa1Ea2 · · · Eakρ0]. For integers k ≥ 1, h ≥ 1,

a sequence a = (a1, . . . , ak) has an error weight of at most h if it contains no more than h
consecutive error jumps. Let {ah} be the set of all jump sequences of length k with an error
weight of at most h. Since {ah} ⊆ {a}, it follows that

min
ρ0

∑
{ah}

pa1pa2 · · · pakTr [ρ0REa1Ea2 · · · Eakρ0] ≤ min
ρ0

∑
{a}

pa1pa2 · · · pakTr [ρ0REa1Ea2 · · · Eakρ0].

(107)
To establish an upper bound on ϵ(t), let h be a tolerable error weight for the code satisfying
Eq. (103). Let z ≥ 0 denote the number of zeros in the sequence ah = (a1, a2, · · · , ak). Then

Ea1Ea2 · · · Eak = Em0
1 REm1

1 · · ·REmz
1 , (108)

where 0 ≤ mi ≤ h for i = 0, . . . , z and z +
∑z

i=0mi = k. Let us rewrite

Tr [ρ0REm0
1 · · ·REmz−1

1 REmz
1 ρ0] = Tr [ρ0REm0

1 · · ·REmz−1

1 (REmz
1 ρ0 − (1− ξ)ρ0)]

+ (1− ξ)Tr [ρ0REm0
1 · · ·REmz−1

1 ρ0]. (109)
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By the definition of threshold, it follows from Eq. (103) that the first term on the right-hand
side of Eq. (109) is non-negative. Therefore, if mz > 0, then

Tr [ρ0REm0
1 · · ·REmz−1

1 REmz
1 ρ0] ≥ (1− ξ)Tr [ρ0REm0

1 · · ·REmz−1

1 ρ0]. (110)

If mz = 0, we have instead

Tr [ρ0REm0
1 · · ·REmz−1

1 REmz
1 ρ0] = Tr [ρ0REm0

1 · · ·REmz−1

1 ρ0]. (111)

Inductively, we know that after z + 1 steps, the exponent of the factor (1− ξ) will be equal
to the number of non-zero mi’s in the jump sequence. We therefore find that

Tr [ρ0REm0
1 · · ·REmz−1

1 REmz
1 ρ0] ≥ (1− ξ)(k+1)/2 ≥ (1− ξ)k, (112)

where we obtained an upper bound on the number of non-zero mi’s by setting mi = 1 for
all i in the relation z+

∑z
i=0mi = k. The number of non-zero mi’s is thus less than or equal

to (k + 1)/2.
Now we are ready to prove the following Lemma:

Lemma 3. Assume an n-qubit code family with increasing n and a tolerable error weight
h = h(n) with respect to the error channel E(·) = 1

N

∑
µEµ(·)E†

µ. Then there exists ξ = 2−Ω(d)

such that
pe(k) ≤ 1−

[
(1− ξ)

(
1− ph+1

1

)]k
, (113)

where p1 =
N∆

κ+N∆
and k ≥ 0.

Proof. The equality trivially holds for k = 0. We therefore consider the case k ≥ 1. To
establish an upper bound on this probability, we use Eq. (107) and Eq. (112) to obtain

pe(k) ≤ 1−min
ρ0

∑
{ah}

pa1pa2 · · · pakTr [ρ0REa1Ea2 · · · Eakρ0] ≤ 1− (1− ξ)k
∑
{ah}

pa1pa2 · · · pak .

(114)
We want to show that (

1− ph+1
1

)k ≤∑
{ah}

pa1pa2 · · · pak . (115)

To show this, we note that, for a given jump sequence ah, its probability in Eq. (115) takes
the form

pa1pa2 · · · pak = pm0
1 p0p

m2
1 p0 · · · pmz

1 , (116)

where z +
∑z

i=0mi = k and each integer satisfies 0 ≤ mi ≤ h. Each jump sequence ah is
uniquely labelled by m(ah) = (m0,m1, · · · ,mz). We can establish the desired lower bound
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by noting that, when p0 ̸= 0,

(1− ph+1
1 )k =

[
h∑
i=0

pi1p0

]k
=

h∑
i1=0

h∑
i2=0

· · ·
h∑

ik=0

pi11 p0p
i2
1 p0 · · · p

ik
1 p0

=
k∑
z=0

∑
m

pm0
1 p0p

m1
1 p0 · · · pmz

1︸ ︷︷ ︸
first k factors

×

[
h−mz∑
i′=0

pi
′

1 p0

]
×

[
h∑
i=0

pi1p0

]k−z−1

≤
k∑
z=0

∑
m

pm1
1 p0p

m2
1 p0 · · · pmz

1

=
∑
{ah}

pa1pa2 · · · pak . (117)

In the second line, the sum is over m = (m0,m1, · · · ,mz), where 0 ≤ mi ≤ h and z +∑z
i=0mi = k. In going from the first line to the second line, we re-write the sum in the first

line using the following steps: we fix the first k factors in each term and sum over the rest of
the possible factors. Then we take the sum over all possible first k factors (i.e.

∑k
z=0

∑
m).

The inequality in the third line follows from
î∑h−mz

i′=0 pi
′
1 p0
ó î∑h

i=0 p
i
1p0
ók−z−1

≤ 1, which

trivially holds for z ≤ k − 1. When z = k and p0 ̸= 0, we have mi = 0 for all i due to the
constraint z +

∑z
i=0mi = k. Therefore, the two factors cancel, and the inequality becomes

an equality. When p0 = 0, we can directly verify that Eq. (117) also holds. This concludes
the proof of the lemma.

If we substitute Eq. (113) into Eq. (106), we get

ϵ(t) =
∑
k

pe(k)
[t(κ+N∆)]k

k!
e−t(κ+N∆)

≤
∑
k

(
1−
ñ
(1− ξ)

Ç
1−
Å

N∆

κ+N∆

ãh+1
åôk)

[t(κ+N∆)]k

k!
e−t(κ+N∆)

= 1− exp

Ç
−(1− ξ)(κ+N∆)

Å
N∆

κ+N∆

ãh+1

t− ξ(κ+N∆)t

å
= 1− exp

Ç
−N∆(1− ξ)

Å
N∆

κ+N∆

ãh
t− ξ(κ+N∆)t

å
, (118)

which proves Theorem 2.

We would like to conclude this Appendix with a side remark on the definition of the tolerable
error weight and the threshold. In Definition 2, instead of Eq. (103), we can also consider a
natural alternative condition on the measure of fidelity:

Tr [ρREmρ] ≥ 1− ξ, ρ = |ψ⟩⟨ψ|, (119)
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for ξ ∈ [0, 1] and 0 ≤ m ≤ h. This condition is necessary but not sufficient for Eq. (103)
to hold. For instance, a pure logical state |ψ′⟩ with a small logical rotation from the orig-
inal logical state |ψ⟩ can satisfy Eq. (119) but will fail to satisfy Eq. (103). Note that
Tr [ρREmρ] = F (ρ,REmρ)2, where the fidelity between two quantum states ρ, σ is defined

as F (ρ, σ) = Tr (
√
ρ1/2σρ1/2). For any quantum state γ, we have [69]

F (ρ, σ) ≥ F (ρ, γ)F (γ, σ)−
»

1− F (ρ, γ)2
»
1− F (γ, σ)2. (120)

The fidelity measure also satisfies joint concavity [69]

F

(∑
i

piρi,
∑
i

piσi

)
≥
∑
i

piF (ρi, σi), (121)

where pi’s form a probability distribution over quantum states ρi, σi. For a generic mixed
state in the codespace ρ = α|ψ⟩⟨ψ|+(1−α)|ϕ⟩⟨ϕ|, with α ∈ [0, 1] and |ψ⟩, |ϕ⟩ ∈ C, it follows
from the joint concavity that

F (ρ,REm1 ρ) ≥ αF (ρψ,REm1 ρψ) + (1− α)F (ρϕ,REm1 ρϕ) ≥
√
1− ξ, (122)

where ρψ = |ψ⟩⟨ψ| and ρϕ = |ϕ⟩⟨ϕ|. The last line follows once the integer m satisfies
0 ≤ m ≤ h. For convenience, let us denote Mz =

∏z
i=0REmi

1 . Using inequality (120) and

the fact that
√
1− F (ρ0,Mzρ0)2 ≤ 1, we can deduce that, if mz > 0,

F (ρ0,Mzρ0) ≥ F (ρ0,Mz−1ρ0)F (Mz−1ρ0,Mzρ0)−
»

1− F (Mz−1ρ0,Mzρ0)2

≥
√

1− ξF (ρ0,Mz−1ρ0)−
√
ξ, (123)

where the last line follows from F (Mz−1ρ0,Mzρ0) ≥
√
1− ξ when setting ρ = Mz−1ρ0 in

Eq. (122). We also have F (ρ0,Mzρ0) = F (ρ0,Mz−1ρ0) if mz = 0. From Eq. (123), we note
that √

1− ξF (ρ0,Mz−1ρ0)−
√
ξ ≥

√
1− ξ1/4F (ρ0,Mz−1ρ0)−

√
ξ (124)

for 0 ≤ ξ ≤ 1. Applying the inequality inductively, similarly to the inductive derivation of
Eq. (112), we have

F (ρ0,Mzρ0) ≥
Ä
1− ξ1/4

äk/2
−
√
ξ
1−

(
1− ξ1/4

)k/2
1−

√
1− ξ1/4

≥
Ä
1− ξ1/4

äk/2
− 2ξ1/4. (125)

The second inequality follows from the use of Bernoulli’s inequality
√

1− ξ1/4 ≤ 1 + ξ1/4/2.
Since F (ρ0,Mzρ0) ≥ 0, this implies

F (ρ0,Mzρ0)
2 ≥
Ä
1− ξ1/4

äk
− 4ξ1/4. (126)
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To bound Eq. (106), we note that

pe(k) = 1−min
ρ0

∑
{a}

pa1pa2 · · · pakTr [ρ0REa1Ea2 · · · Eakρ0]

= 1−min
ρ0

∑
{a}

pa1pa2 · · · pakF (ρ0,Mzρ0)
2

≤ 1 + 4ξ1/4 −
Ä
1− ξ1/4

äk∑
{a}

pa1pa2 · · · pak

≤ 1 + 4ξ1/4 −
Ä
1− ξ1/4

äk (
1− ph+1

1

)k
, (127)

where z denotes the number of 0’s in the jump sequence a, and we used Eq. (115) in the last
line. Substituting this into Eq. (106), we get a modified Theorem 2 based on this alternative
definition of the tolerable error weight and the threshold:

ϵ(t) ≤ 1 + 4ξ1/4 − exp

Ç
−N∆(1− ξ1/4)

Å
N∆

κ+N∆

ãh
t− ξ1/4(κ+N∆)t

å
. (128)

Note that ξ, and hence the contribution ξ1/4, is exponentially small in the distance of the
quantum codes. For codes with a large enough distance, the bound yields qualitatively the
same scaling of the error rate as Eq. (118) as the code distance increases.

Appendix E: Proof of Theorem 3

This appendix contains the necessary assumptions and the proof of Theorem 3. In
particular, we consider a noise model where the error jump operators satisfy E2

µ = I and
EµEµ′ = ±Eµ′Eµ for all µ, µ′. This noise model is a special case of a Poisonnian noise model.
We will assume exactly the same setup as in the previous appendix, i.e. Eqs. (104) and (106).
We prove an error bound for the class of n-qubit error-correcting codes C that have a varying
distance d = d(n) and a tolerable error weight h(n) tailored for this particular noise model
(see Eq. (130) for a precise definition).

An error configuration is a state E{µ}|ψ⟩⟨ψ|E†
{µ} for some fixed reference state |ψ⟩ ∈ C,

where the operator E{µ} =
∏

µ∈{µ}Eµ is the error operator that creates the configuration

and {µ} is a subset of (distinct) error indices that indicate the errors contained in the
configuration (see Eq. (3)). The size of the set {µ} is the number of physical errors in
the error configuration. For convenience, we define Qk to be the error channel that creates
a mixture of error configurations containing k physical errors and is symmetric under any
relabeling (permutation) of the error indices µ. More precisely, we define Q0 = I to be the
identity channel. For k ≥ 1, we define Qk(·) = 1

|Sk|
∑

{µ}k∈Sk
E{µ}k(·)E

†
{µ}k , where the set Sk

is the set of all error configurations {µ}k with k physical errors. Note that Q1 = E1, where
E1(·) = 1

N

∑
µEµ(·)E†

µ is the total error channel defined in the Lindbladian in Eq. (104) and
N is the total number of error jumps in the Lindbladian.

Let us consider the channel Qk
1. The product expands into a convex combination of terms

that contain a different number of Eµ’s. Since the channel is symmetric under permutation
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of the error indices, all the terms with the same number of Eµ’s will have the same coefficient.
In particular, this implies that, for any integer k ≥ 0,

Qk
1 =

k∑
i=0

rkiQi, (129)

where rki ≥ 0 and
∑

i rki = 1.
We consider the class of n-qubit error-correcting codes C with a varying distance d = d(n)

that satisfy the following: There exists an integer-valued function h = h(n) > 0 such that
for k ≤ h and any |ψ⟩ ∈ C, the following holds:

RQk|ψ⟩⟨ψ| − (1− ξ)|ψ⟩⟨ψ| ≥ 0, (130)

where ξ = 2−Ω(d) and is independent of |ψ⟩. It follows that

RQk
1|ψ⟩⟨ψ| =

k∑
i=0

rkiRQi|ψ⟩⟨ψ| ≥ (1− ξ)|ψ⟩⟨ψ|. (131)

Note that h(n) is a tolerable error weight for C. For example, if we let h = ℓ, where ℓ is the
error radius satisfying d = 2ℓ + 1, then we have ξ = 0. Moreover, if there exists a constant
f > 0 such that nf ≤ h for all n, then for k ≤ nf , the code we consider has a threshold
according to Definition 2. This set of codes is not very restricted and contains commonly
known examples, e.g. the quantum stabilizer codes subject to single-qubit Pauli noise.

We now proceed to prove Theorem 3. We first prove the following lemma:

Lemma 4. Assume an n-qubit code family with increasing n and a tolerable error weight
h = h(n) with respect to the error channel defined above. Then pe(k) in Eq. (106) satisfies

pe(k) ≤ 1− [(1− ξ) (1− p1s1)]
k , (132)

where ξ = 2−Ω(d) and s1 is the solution to the recurrence relation

sv =
v

N
p1sv−1 +

(
1− v

N

)
p1sv+1, s0 = 0, sh+1 = 1, (133)

with p1 =
N∆

κ+N∆
.

Proof. Our goal is to lower-bound the contribution minρ0
∑

{a} pa1pa2 · · · pakTr [ρ0REa1Ea2 · · · Eakρ0]
contained in pe(k) (defined below Eq. (106)), where {a} is the set of length-k trajectories
a = (a1, a2, · · · , ak) with the labels ai ∈ {0, 1}. For a given jump sequence a, we can write

pa1pa2 · · · pakTr [ρ0REa1Ea2 · · · Eakρ0] = (pm0
1 )(p0p

m1
1 ) · · · (p0pmz

1 )Tr [ρ0REm0
1 · · ·REmz

1 ρ0],
(134)

where z denotes the number of 0’s in the sequence a = (a1, · · · , ak) and z +
∑z

i=0mi = k.
Note that the sequence a is also uniquely labelled by m(a) = (m0,m1, · · · ,mz). We use
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Eq. (129) to decompose the error subsequence

(pm0
1 )(p0p

m1
1 ) · · · (p0pmz

1 )Tr [ρ0REm0
1 · · ·REmz

1 ρ0]

=

(
pm0
1

m0∑
i0=0

rm0i0

)(
p0p

m1
1

m1∑
i1=0

rm1i1

)
· · ·

(
p0p

mz
1

mz∑
iz=0

rmziz

)
Tr [ρ0RQi0RQi1 · · ·RQizρ0]

≥ (1− ξ)k

Ñ
pm0
1

min{h,m0}∑
i0=0

rm0i0

éÑ
p0p

m1
1

min{h,m1}∑
i1=0

rm1i1

é
· · ·

Ñ
p0p

mz
1

min{h,mz}∑
iz=0

rmziz

é
= (1− ξ)k

min{h,m0}∑
i0=0

min{h,m1}∑
i1=0

· · ·
min{h,mz}∑

iz=0

(pm0
1 rm0i0) (p0p

m1
1 rm1i1) · · · (p0pmz

1 rmziz) . (135)

In the second line, we restricted the sums and used the fact that

Tr [ρ0RQi0RQi1 · · ·RQizρ0] ≥ (1− ξ)k, (136)

which follows from Eq. (130) using the same reasoning as the one used to derive Eq. (112).
To proceed, we note that the decomposition in Eq. (129) can be interpreted as a random-

walk process that either creates or annihilates an error at each step. Each jump randomly
applies one of the N different errors. The same error cancels with itself if it is triggered an
even number of times. Let v be the number of physical errors at the current configuration
(i.e. E{µ}|ψ⟩⟨ψ|E†

{µ} with a subset of error indices satisfying |{µ}| = v and some fixed ref-

erence logical state |ψ⟩). The next jump has a probability of 1 − v/N to create a physical
error or a probability of v/N to cancel a physical error. At each step, the number of physical
errors will be updated accordingly. For example,

Q1Q1 = 1 · 1

N
· Q0 + 1 · N − 1

N
· Q2, (137)

where Q2(·) = 1
N(N−1)

∑
µ

∑
µ′ ̸=µEµEµ′(·)E

†
µ′E

†
µ. That is, when applying Q1 twice, there are

two possible paths for the errors: (i) The first jump creates an error, and the second jump
cancels the created error; (ii) The first jump creates an error, and the second jump creates
another error. Similarly, we have Q2Q1 =

2
N
Q1 +

N−2
N

Q3. This leads to three paths:

Q1Q1Q1 = 1 · 1

N
· 1 · Q1 + 1 · N − 1

N
· 2

N
· Q1 + 1 · N − 1

N
· N − 2

N
· Q3. (138)

The three terms correspond to the three possible paths when applying Q1 three times. This
suggests that each coefficient rki in Eq. (129) takes the form

rmi =
∑

{v(m,i)}

g(v0, v1) · · · g(vm−1, vm), (139)

where {v(m, i)} is the set of all paths that lead to i physical errors when Q1 is applied m
times. Here v(m, i) = (v0, v1, v2, · · · , vm), where vj is the number of physical errors after the
j-th jump. By definition, v0 = 0 and vm = i. The coefficient g(vj−1, vj) is the probability
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that vj errors are present after the j-th jump, conditioned on the presence of vj−1 errors
after the (j − 1)-th jump. Explicitly, we have, for j ≥ 1,

g(vj−1, vj) =

®
vj−1

N
if vj − vj−1 = −1,

1− vj−1

N
if vj − vj−1 = 1.

(140)

The goal is to lower-bound the contribution minρ0
∑

{a} pa1pa2 · · · pakTr [ρ0REa1Ea2 · · · Eakρ0]
from Eq (106). Summing over all possible length-k trajectories {a} is the same as sum-
ming over {m(a)}, which labels each trajectory in {a} uniquely by the integer sequence
(m0, · · · ,mz). Summing Eq. (135) over {m(a)} and using Eq. (139) leads to

∑
{m(a)}

min{h,m0}∑
i0=0

min{h,m1}∑
i1=0

· · ·
min{h,mz}∑

iz=0

(pm0
1 rm0i0) (p0p

m1
1 rm1i1) · · · (p0pmz

1 rmziz)

=
∑

{m(a)}

min{h,m0}∑
i0=0

min{h,m1}∑
i1=0

· · ·
min{h,mz}∑

iz=0

∑
{v(m0,i0)}

∑
{v(m1,i1)}

· · ·
∑

{v(mz ,iz)}(
m0∏
j=1

p1g(vj−1, vj)

)
p0

(
m1∏
j=1

p1g(vj−1, vj)

)
p0 · · ·

(
mz∏
j=1

p1g(vj−1, vj)

)

≥
∑

{m(a)}

min{h,m0}∑
i0=0

min{h,m1}∑
i1=0

· · ·
min{h,mz}∑

iz=0

∑
{vh(m0,i0)}

∑
{vh(m1,i1)}

· · ·
∑

{vh(mz ,iz)}(
m0∏
j=1

p1g(vj−1, vj)

)
p0

(
m1∏
j=1

p1g(vj−1, vj)

)
p0 · · ·

(
mz∏
j=1

p1g(vj−1, vj)

)
, (141)

where in the last inequality we restrict the sum to the subset {vh(m, i)} ⊆ {v(m, i)} of paths
along which the number of physical errors v always satisfies v ≤ h. Each term in the sum
is a product of k jump probabilities for a random-walk trajectory specified by the sequence
(vh(m0, i0), · · · ,vh(mz, iz)). To proceed, let us now define a random walk according to the
rules in Eq. (139): Given a configuration with v physical errors, the random walk updates
with one of the three stochastic jumps:

1. With probability p1(1− v
N
), v → v + 1.

2. With probability p1
v
N
, v → v − 1.

3. With probability p0, the process terminates and returns success.
After the first jump of the walk, two more termination checks (note that these are not
counted as jumps) are done before each future stochastic jump is taken:

4. If v = 0, the process terminates and returns success.
5. If v = h+ 1, the process terminates and returns failure.

This random walk is always initialized in a configuration with zero physical errors, and the
walk terminates with probability one (non-terminating trajectories have an infinite number
of steps and therefore a probability of zero). To establish a lower bound for Eq. (141),
we consider a stochastic process Φ(k) of k consecutive independent random-walk processes
defined above. The stochastic process Φ(k) returns success if all k random walks return
success. By definition, Φ(k) contains at least k jumps before it is terminated. Furthermore,
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we note that the set of all possible first k jumps of a successful Φ(k) is the same as the set
of trajectories in Eq. (141).

Namely, any trajectory specified by (vh(m0, i0), · · · ,vh(mz, iz)) in Eq. (141) is a valid
trajectory for the first k jumps in a successful Φ(k), and any possible set of first k jumps
taken by the process can be specified by some (vh(m0, i0), · · · ,vh(mz, iz)). To see this,
suppose we have a trajectory for the first k jumps for a successful Φ(k). Since no more than
h physical errors can be generated by the trajectory, we can find all the subsequences of
jumps separated by a recovery (termination with a success) and define the corresponding
vh(m, i) for each subsequence. Conversely, if we have some (vh(m0, i0), · · · ,vh(mz, iz)), we
can identify all the subsequences of jumps separated by the termination steps 3 and 4 of
Φ(k), with each subsequence belonging to one of the independent random walks in Φ(k). We
therefore have a one-to-one map between the two sets of trajectories. It follows that they
are the same set.

This identification leads to the lower bound

∑
{m(a)}

min{h,m0}∑
i0=0

min{h,m1}∑
i1=0

· · ·
min{h,mz}∑

iz=0

∑
{vh(m0,i0)}

∑
{vh(m1,i1)}

· · ·
∑

{vh(mz ,iz)}(
m0∏
j=1

p1g(vj−1, vj)

)
p0

(
m1∏
j=1

p1g(vj−1, vj)

)
p0 · · ·

(
mz∏
j=1

p1g(vj−1, vj)

)

≥
∑

{m(a)}

min{h,m0}∑
i0=0

min{h,m1}∑
i1=0

· · ·
min{h,mz}∑

iz=0

∑
{vh(m0,i0)}

∑
{vh(m1,i1)}

· · ·
∑

{vh(mz ,iz)}

Pr (Φ(k) returns success|First k jumps)

×

(
m0∏
j=1

p1g(vj−1, vj)

)
p0

(
m1∏
j=1

p1g(vj−1, vj)

)
p0 · · ·

(
mz∏
j=1

p1g(vj−1, vj)

)
= Pr (Φ(k) returns success) , (142)

where the conditional probabilities are the success probability of Φ(k) conditioned on its first
k stochastic jumps.

To solve for Pr (Φ(k) returns success), we only need to solve for the success probability
of each random walk. Let us now consider a generalized random walk that follows the same
rules but can start from initial configurations with any number of physical errors. Let sv be
the conditional probability that, when initialized in a configuration with v ∈ [1, h] physical
errors, the random walk terminates with failure. For mathematical convenience, we also
define s0 = 0 and sh+1 = 1. The probability sv for v ∈ [1, h] can be solved from a recurrence
relation

sv =
v

N
p1sv−1 +

(
1− v

N

)
p1sv+1, s0 = 0, sh+1 = 1. (143)

Recall that s1 is the failure probability conditioned on an initial configuration with one
physical error. To get the failure probability, we need to multiply s1 by p1—the probability
of creating one error from a zero-error configuration. Therefore, the failure probability for a
single random walk starting from a zero-error configuration is p1s1. The success probability
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Figure 7: Numerical solutions to the error-rate ratio s1/
Ä

N∆
κ+N∆

äh
for h = 0.4N . (a) The

log-log plot shows the ratio as a function of N for different κ/∆. We see that the ratio for
different κ/∆ eventually saturates to a constant at large N . (b) The semi-log plot shows
the saturated ratio as a function of κ/∆ with a fitted line −0.4957κ/∆ + 0.0005. Since

limN→∞
Ä

N∆
κ+N∆

äfN
= e−fκ/∆ for any constant f , the linearity of the plot of the saturated

ratio suggests that s1 has the form log s1 ∝ −κ/∆ at N → ∞.

for the random walk and Φ(k) are therefore (1 − p1s1) and (1 − p1s1)
k, respectively. This

provides a lower bound for the contribution

min
ρ0

∑
{a}

pa1pa2 · · · pakTr [ρ0REa1Ea2 · · · Eakρ0] ≥ [(1− ξ)(1− p1s1)]
k . (144)

This yields the desired bound stated in the lemma.

Plugging the bound on pe(k) from Eq. (132) into Eq. (106), we arrive at the desired
bound in Theorem 3.

To understand the behaviour of the improved bound (Theorem 3) compared to the one
given by Theorem 2, let us solve for s1 numerically. We consider the ratio of error rates

appearing in the two theorems: s1/
Ä

N∆
κ+N∆

äh
, where h = fN with f ∈ (0, 1/2]. We split the

scenarios into two cases:
(i) f < 1/2. We evaluate the ratio for f = 0.4 and 0.45 for different N and different noise

rates κ/∆. In Fig. 7, we show the numerical results for f = 0.4. For f = 0.45, the
plots look qualitatively the same.

(ii) f = 1/2. The numerical results are shown in Fig. 8.
From these numerical results, we arrive at the empirical observations presented in the main
text.
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Figure 8: Numerical solutions to the error-rate ratio s1/
Ä

N∆
κ+N∆

äh
for h = N/2. (a) The

log-log plot shows the error-rate ratio as a function of N . We see in this case the ratio is
steadily converging to 0 at N → ∞. The linearity of the convergence suggests algebraic
decay as a function of N with different exponents. (b) The plot, on a linear scale, shows the
fitted exponents obtained by a linear fit to the straight lines in the error-ratio plot (a). A
linear fit to the exponents yields −0.24956κ/∆− 0.00707 ≈ −κ/(4∆). We therefore deduce
empirically that the ratio behaves as ∼ 1/Nκ/(4∆) as N → ∞.

Appendix F: Proof of Theorem 4

This appendix contains the proof of Theorem 4. The proof of this theorem partially uses
the proof of Theorem 1. We start with Eq. (87) which takes the form〈 〉

=
1

s
+

1

s

〈
. . .︸ ︷︷ ︸
ℓ+ 1

〉
. (145)

Next, we recall that the Poissonian error generator takes the form ∆LE(ρ) = N∆(E(ρ)− ρ),
where E(ρ) = N−1

∑N
µ=1EµρE

†
µ is the error superoperator. Let us use the notation

N∆E = , N∆I = . (146)

where I is the identity superoperator. Then, we can state the following diagrammatic
relation (see Eq. (68)):

= − . (147)

Using the decomposition in Eqs. (76) and (147), we have〈 〉
=

1

s
+
1

s

〈
. . .︸ ︷︷ ︸
ℓ

〉
−1

s

〈
. . .︸ ︷︷ ︸
ℓ

〉
+
1

s

〈
. . .︸ ︷︷ ︸
ℓ

〉
.

(148)
Taking into account that Wt = e−κtI for global decoder, the first terms can be rewritten as

1

s

〈
. . .︸ ︷︷ ︸
ℓ

〉
=

1

s(s+ κ)

〈
. . .︸ ︷︷ ︸
ℓ

〉
. (149)
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Using Eq. (85), we can rewrite the second term as

1

s

〈
. . .︸ ︷︷ ︸
ℓ

〉
=

N∆

s(s+ κ)

〈
. . .︸ ︷︷ ︸
ℓ

〉
=

N∆

s(s+ κ)

〈
. . .︸ ︷︷ ︸
ℓ+ 1

〉
.

(150)
The last term in Eq. (148) vanishes due to Lemma 2.

By combining these results, we reach the conclusion that〈 〉
=

1

s
+

1

s(s+ κ)

〈
. . .︸ ︷︷ ︸
ℓ

〉
− N∆

s(s+ κ)

〈
. . .︸ ︷︷ ︸
ℓ+ 1

〉
. (151)

Subsequently, by utilizing Eq. (87), we can express

1

s

〈
. . .︸ ︷︷ ︸
ℓ+ 1

〉
=
〈 〉

−1

s
. (152)

After rearranging the terms, we obtain〈 〉Å
1 +

N∆

s+ κ

ã
=

1

s

Å
1 +

N∆

s+ κ

ã
+

1

s(s+ κ)

〈
. . .︸ ︷︷ ︸
ℓ

〉
. (153)

Lastly, by dividing both sides of the equation by (1 +N∆/(s+ κ)), we arrive at〈 〉
=

1

s
+

1

s(s+ κ+N∆)

〈
. . .︸ ︷︷ ︸
ℓ

〉
. (154)

By repeating this procedure ℓ times, we obtain the expression〈 〉
=

1

s
+

1

s(s+ κ+N∆)ℓ
〈

ℓ+1
〉
. (155)

The explicit form of the inverse Laplace transform of this equation can be obtained as

L −1
〈

ℓ+1
〉
=

1

2
(N∆)ℓ+1Tr

[
Q exp(Lt)E ℓ+1(δρ)

]
. (156)

As E and exp(Lt) are completely positive trace-preserving (CPTP) maps that do not alter
the matrix norm, we can put a lower bound on

Tr
[
Q exp(Lt)E ℓ+1(δρ)

]
= Tr

[
Q exp(Lt)E ℓ+1(|0⟩⟨0|)

]
−Tr

[
Q exp(Lt)E ℓ+1(|1⟩⟨1|)

]
≥ −2∥Q∥ = −2.

(157)

Thus we get
L −1

〈
ℓ+1
〉
≥ −(N∆)ℓ+1. (158)

Then we derive the bound

L −1
〈 〉

≥ 1− (N∆)ℓ+1L −1

{
1

s2(s+ κ+N∆)ℓ

}
. (159)

Taking the inverse Laplace transform, we get

ϵ(t), δ(t) ≤ 1

(1 + κ/N∆)ℓ+1
F
(
(κ+N∆)t

)
. (160)

This expression concludes our proof.
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Appendix H: Dissipative toric code

In this appendix, we closely examine the Lindblad operator for the autonomous decoder
based on the two-dimensional toric code as described in Section 5. We demonstrate that, in
the absence of noise, the recovery Lindblad operator in Eq. (8) is exactly solvable. We use
these solutions to perturbatively derive the spectral gap of the full operator.

For simplicity, we will limit our analysis to the case in which only star excitations are
allowed, i.e., no plaquettes are excited. Despite this, we emphasize that our main conclusions
should hold in the presence of both types of excitations. We will consider noise models where
the eigenvalues of Bp are always good quantum numbers, and focus our attention on the
gauge sector where Bp = +1 for all p, i.e., the subspace that contains the ground states. The
reduced Hilbert space will consist of states that have an even number of star excitations. We
choose the following labeling convention for states that span the reduced Hilbert space:

|0, 0;0⟩ =
∏
i

(1 + Ai)|vac⟩, |r, s;0⟩ = (gx)
r(gy)

s|0, 0;0⟩, |r, s,k⟩ =
Ä∏

Z
ä
k
|r, s,0⟩,

(161)
where Ai represents different star operators, |vac⟩ is the ground state of all Zj operators:
Zj|vac⟩ = |vac⟩; r, s ∈ 0, 1 label different topological sectors; gx/y = Πhor/vertX is a product
of X operators along a string (on the dual lattice) that wraps around the horizontal/vertical
direction of the torus. It is easy to check that |r, s;0⟩ are orthogonal ground states of H
(they are +1 eigenstates of all the As and Bp). Excited states |r, s,k⟩ are labeled by k. For
a system with L× L stars, k is an L2-dimensional vector that labels the excited stars with
1 and de-excited stars with 0. Excited eigenstates are defined by applying strings of (

∏
Z)

operators on the ground state via the smallest number of Z operators. When there are
multiple minimal-weight excitation operators, then a (

∏
Z)k operator is chosen arbitrarily

from the various options.
We consider the following recovery map:

R(ρ) =
∑
k

KkρK
†
k, Kk =

Ä∏
Z
ä
k
Pk, (162)

where Pk = Πj(1 + (−1)kjAj) is a projector onto a given star configuration k, and (
∏
Z)k

is an operator that “fixes” the error using the minimal number of Z operators. In other
words, Kk|r, s;k⟩ = |r, s;0⟩. Note that the number of star configurations is 2L

2−1, which
means that the number of dissipators scales exponentially with system size. Note also that
the dissipators are non-local, i.e. they have support on the full lattice. Nevertheless, there
is still a notion of locality: The dissipators fix star errors via strings of Z operators which
minimize the total path length between excited stars, a process known as minimal weight
matching.

One can easily check that arbitrary superpositions of toric code ground states are the
only steady states of the system. It is thus clear that this idealized limit hosts a qudit
steady-state structure. We now ask how stable this degeneracy is with respect to dephasing
perturbations, which act on each physical qubit, i.e. how quickly do “coherences” decay in
the presence of dephasing. To this end, we introduce the following dissipators on each edge
of the lattice:

Eµ = Zµ. (163)
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Let us reformulate the question more precisely. We begin by noting that the jump
operators {Kk, Eµ} commute with Bp, and hence indeed it makes sense to focus on the
gauge sector with Bp = +1 for all p. Even within this gauge sector, we can further partition
the subspace into different “topological sectors”. Let us define the following projection
operators:

Prs =
∑
k

|r, s;k⟩⟨r, s;k|, (164)

where r, s ∈ 0, 1 and Prs projects states into topological sector r, s. We now note that
all of the dissipators commute with Prs. Thus these projectors are “strong symmetries” of
the Lindbladian [70], and hence there exists a basis where the Lindbladian in Eq. (9) is be
block-diagonalized and consists 42 = 16 different blocks:

L = Diag[L0,0,L0,1,L0,2, . . .L3,3], (165)

where the numbers 0 to 3 label four different topological sectors of the bras and kets accoding
to the convention (r = 0, s = 0) → 0, (r = 1, s = 0) → 1, (r = 0, s = 1) → 2, (r = 1, s =
1) → 3. In words, the Lindbladian L0,0 acts on operators where both ket and bra belong to
the same topological sector r = 0, s = 0; on the other hand, L0,1 acts on operators where the
ket belongs to sector r = 0, s = 0, while the bra belongs to sector r = 1, s = 0. Operators
belonging to different topological sectors evolve independently.

We now show that, in the absence of dephasing (∆ = 0), the model is exactly solvable,
meaning that we can write down exact expressions for the right and left eigenoperators of
the Lindbladian in each topological sector and its spectrum. Let us define right and left
eigenoperators of the Lindbladian:

Lp,q(rp,q;m) = Λmrp,q;m, L†
p,q(lp,q;m) = Λ∗

mlp,q;m, (166)

where p, q label the topological sector, and m represents different eigenvalues within a given
sector (it turns out that the spectrum is the same in all sectors in this limit, so we suppress
the topological labels on Λ).

For ∆ = 0, each topological sector has exactly one eigenvalue of zero: Λ0 = 0. One can
show that the corresponding eigenoperators are

rp,q;0 = |p;0⟩⟨q;0|, lp,q;0 =
∑
k

|p;k⟩⟨q;k|. (167)

This ensures that arbitrary superpositions of toric code ground states are indeed steady
states of the model:

|ψ⟩ =
3∑
p=0

cp|p;0⟩, L(|ψ⟩⟨ψ|) = 0, ∀
3∑
p=0

|cp|2 = 1. (168)

The full Lindbladian L therefore has 42 = 16 eigenvalues of zero. In a slight abuse of
notation, we shall call this a “qubit steady state structure”. (Rather than a qudit steady
state structure.)
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We now turn to “diagonal” eigenoperators which come with a decay rate: Λk = −κ. The
corresponding eigenoperators are

rp,q;k = |p;k⟩⟨q;k| − |p;0⟩⟨q;0|, lp,q;k = |p;k⟩⟨q;k|. (169)

It is clear that tr [rp,q;k] = 0 and tr [l†p,q;krp,q;k] = 1, which are necessary conditions.
Finally, we turn to off-diagonal eigenoperators which come with a decay rate: Λk,k′ = −κ.

The corresponding eigenoperators are:

rp,q;k,k′ = |p;k⟩⟨q;k′|, lp,q;k,k′ = |p;k⟩⟨q;k′|. (170)

In this case, the right and left eigenoperators happen to be identical.

Perturbative results

Having found the exact expressions for all of the right and left eigenoperators of the
Lindbladian in the absence of dephasing ∆ = 0, we would now like to use perturbation
theory to examine the effects of small dephasing ∆ > 0. In particular, we would like to
know the fate of the qubit steady state structure, i.e. whether the Lindbladian with weak
dephasing has 16 eigenvalues of zero in the thermodynamic limit.

The Lindbladian can be block diagonalized into different topological sectors (see Eq. (165))
even in the presence of dephasing. Note that all operators with non-zero trace must belong
to one of the diagonal sectors Lq,q, while the off-diagonal sectors act on operators with zero
trace. Since it is possible to initialize a valid (traceful) density matrix in each of the diag-
onal sectors Lq,q, we know that (even in the presence of dephasing) each of these sectors
must have an eigenvalue of zero corresponding to the steady state in each topological sector.
The full Lindbladian L is thus guaranteed to have at least four eigenvalues of zero even in
the presence of Z-dephasing. The off-diagonal sectors Lp,q are not guaranteed steady state
solutions in general. However, from the exact diagonalization above, we know that, in the
absence of dephasing, these sectors will have an eigenvalue of zero, since arbitrary superposi-
tions of toric code ground states are stable (e.g. L(|0;0⟩⟨1;0|) = 0). We wish to understand
how the decay rate of these off-diagonal coherences scales with system size in the presence
of dephasing; in particular, we would like to know if the decay rate scales to zero in the
thermodynamic limit.

Let us specialize to an off-diagonal sector Lp,q (we shall suppress the topological indices
henceforth) and examine the shift to the eigenvalue Λ0 = 0 via perturbation theory. The
corrections (up to third order) read

δΛ(1) = ⟨l0|L′|r0⟩, (171)

δΛ(2) =
∑
m̸=0

⟨l0|L′|rm⟩⟨lm|L′|r0⟩
Λ0 − Λm

=
1

κ

Ä
⟨l0|L′2|r0⟩ − ⟨l0|L′|r0⟩2

ä
, (172)

δΛ(3) =
∑
m1 ̸=0

∑
m2 ̸=0

⟨l0|L′|rm1⟩⟨lm1|L′|rm2⟩⟨lm2|L′|r0⟩
(Λ0 − Λm1)(Λ0 − Λm2)

− δΛ1

∑
m ̸=0

⟨l0|L′|rm⟩⟨lm|L′|r0⟩
(Λ0 − Λm)2

(173)

=
1

κ2

Ä
⟨l0|L′3|r0⟩ − 3⟨l0|L′|r0⟩⟨l0|L′2|r0⟩+ 2⟨l0|L′|r0⟩3

ä
, (174)
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where we use the shorthand ⟨l|L′|r⟩ ≡ tr [l†L′(r)], and

L′(ρ) =
∑
i

(ZiρZi − ρ) (175)

is the dephasing perturbation. We have simplified some of the general expressions by noting
that the relevant excited eigenvalues are all Λm = −κ and Λ0 = 0. Examining the expressions
for the eigenvalue shift, it is clear that, if ⟨l0|(L′)x|r0⟩ = 0 for all x ≤ y, then δΛ(y) = 0.

One-dimensional system.—Let’s consider a 1×L lattice where L = 2j+1, j ∈ Z, such
that L is odd. We define two different toric code ground states via |2;0⟩ = X1|0;0⟩, where
X1 is a global loop on the dual lattice in the vertical direction (in this case, the vertical
direction has length 1 so the global loop is a single operator). We define the right and left
eigenoperators in the unperturbed limit:

r0 = |2;0⟩⟨0;0|, l0 =
∑
k

|2;k⟩⟨0;k|. (176)

We next define the perturbation

L′(ρ) = Z(ρ)− Lρ, Z(ρ) =
L∑
i=1

ZiρZi, (177)

where Zi act only on the horizontal edges of the lattice.
Consider the first term in the perturbation theory:

tr [l†0L′(r0)] =
∑
k

tr[|0,k⟩⟨2;k| (Z(|2,0⟩⟨0,0|)− L|2,0⟩⟨0,0|)] (178)

= −L+
∑
k

⟨2;k|Z(|2,0⟩⟨0,0|)|0,k⟩] (179)

= −L+ L = 0. (180)

To order α, we find

tr [l†0(L′)α(r0)] =
α∑
i=0

Å
α
i

ã
(−L)α−i

∑
k

⟨2;k|Z i(|2,0⟩⟨0,0|)|0,k⟩, (181)

where we have introduced the binomial coefficient. We now note that, for i ≤ j,∑
k

⟨2;k|Z i(|2,0⟩⟨0,0|)|0,k⟩ = Li, for: i ≤ j. (182)

This implies

tr [l†0(L′)α(r0)] = L2

α∑
i=0

Å
α
i

ã
(−1)α−i1i = 0, for: α ≤ j, (183)

where we have used a property of binomial coefficients.
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We need to be careful at order α = j + 1. In this case,∑
k

⟨2;k|Zj+1(|2,0⟩⟨0,0|)|0,k⟩ = Lj+1 − 2

Å
L!

j!

ã
. (184)

The term with the factorial is counting the number of configurations with j+1 excited edges
which have a logical error after applying the recovery jump operators Lk. This implies

tr [l†0(L′)j+1(r0)] = −2

Å
L!

j!

ã
. (185)

This is the lowest-order non-trivial recovery.
This implies that the contribution to the eigenvalue at this order is

Λ/κ = −2

Å
L!

(L/2)!

ãÅ
∆

κ

ãL/2
+O((∆/κ)L/2+1), (186)

where we have used j + 1 ≈ L/2. We note that this term blows up in the thermodynamic
limit L → ∞, since the factorial term grows faster than the exponential term decays. One
way to remedy this is to increase the dissipation linearly with the system size: κ = κ0L.
Then the thermodynamic limit is well-defined:

lim
L→∞

Å
L!

(L/2)!

ãÅ
∆

κ0L

ãL/2
= 0 (187)

for ∆/κ0 ≪ 1 such that the recovery to the eigenvalue goes to zero in the thermodynamic
limit.

Two-dimensional system.—A similar analysis can be done for a 2D system on an
L× L lattice. We consider a perturbation

L′(ρ) = Z(ρ)− 2L2ρ, Z(ρ) =
2L2∑
i=1

ZiρZi, (188)

where Zi act on each of the 2L2 edges of the lattice.
Again, the lowest-order contribution comes at order j + 1:

tr [l†0(L′)j+1(r0)] = −2L

Å
L!

j!

ã
, (189)

where this factor basically counts the number of configurations with j + 1 excited edges,
which have a logical error after applying the recovery jump operators Lk.

The recovery to the eigenvalue at this order is

Λ/κ = −2L

Å
L!

(L/2)!

ãÅ
∆

κ

ãL/2
+O((∆/κ)L/2+1). (190)

Again, this term blows up in the thermodynamic limit L → ∞, since the factorial term
grows faster than the exponential term decays. One way to remedy this is to increase the
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dissipation linearly with the linear system size: κ = κ0L. Then the thermodynamic limit is
well-defined:

lim
L→∞

L

Å
L!

(L/2)!

ãÅ
∆

κ0L

ãL/2
= 0 (191)

for ∆/κ0 ≪ 1 such that the recovery to the eigenvalue goes to zero in the thermodynamic
limit.

In conclusion, we have shown that the dissipative toric code with single-shot recovery
jumps will host a qubit steady state structure in the presence of dephasing perturbations
if the strength of the recovery process scales with the linear system size. Moreover, our
analysis suggests that any local perturbation will not destroy the qubit steady state for
such a system. As we discuss in the main text, the perturbative analysis also misses a
non-perturbative contribution for the system’s lifetime, which will result in a quantitatively
different scaling dependence on ∆.
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[45] A. Lucia, D. Pérez-Garćıa, and A. Pérez-Hernández, “Thermalization in kitaev’s quan-
tum double models via tensor network techniques,” arXiv:2107.01628, 2023.

[46] I. Bardet, A. Capel, L. Gao, A. Lucia, D. Pérez-Garćıa, and C. Rouzé, “Rapid thermal-
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