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We demonstrate quantum interference of three photons that are distinguishable in time by resolving them
in the conjugate parameter frequency. We show that the multiphoton interference pattern in our setup can be
manipulated by tuning the relative delays between the photons, without the need for reconfiguring the
optical network. Furthermore, we observe that the symmetries of our optical network and the spectral
amplitude of the input photons are manifested in the interference pattern. We also demonstrate time-
reversed Hong-Ou-Mandel-like interference in the spectral correlations using time-bin entangled photon
pairs. By adding a time-varying dispersion using a phase modulator, our setup can be used to realize
dynamically reconfigurable and scalable boson sampling in the time domain as well as frequency-resolved
multiboson correlation sampling.
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Thenonclassical interference of twoormore photons in an
optical network is the fundamental phenomenon enabling
many algorithms used in linear optics quantum computing
[1–4], quantum communications [5–7], metrology [8,9], and
boson sampling [10–12]. Quantum interference, such as
Hong-Ou-Mandel (HOM) and Shih-Alley interference
[13,14], usually requires photons that are identical in their
temporal and spectral degrees of freedom. Any distinguish-
ability in the photons at the detectors leads to a reduction in
the interference. The difficulty in experimentally generating
identical photons has prompted strong interest in developing
real world optical networks enabling the interference of
nonidentical photons [15,16]. Recently, it was shown that
nonclassical interference can be observed between photons
completely distinguishable in time or frequency by exploit-
ing correlation measurements in the corresponding conju-
gate parameter [17–21]. Remarkably, the interference can
occur for any values of the input frequencies (or times) as
long as the detector resolution in the conjugate parameter is
sufficient to make the detectors “blind” to the spectral (or
temporal) distinguishability of the photons. Furthermore, the
temporal or spectral distinguishability can actually be used
as a resource, for example, to reveal spectral properties of the
input photons and the symmetries of the optical net-
work [19,20].
Many experiments have demonstrated interference of two

photons that are distinguishable in frequency or time by
resolving them in the conjugate parameter [17,18,22,23].

Scaling these spectrally or temporally resolved interference
phenomena to a larger number of photons can enable, for
example, multiboson correlation sampling experiments
where sampling over temporal or spectral modes, in addition
to spatial modes, can relax the requirements on generating
identical photons and could demonstrate quantum
supremacy [24–27]. Indeed, time-resolved interference of
three photons with different frequencies was demonstrated
very recently where the temporal correlations between
detected photons were manipulated using a spatial network
of beam splitters [21]. In contrast, the complementary
phenomenon, that is, frequency-resolved interference of
multiple photons that are separated in time, allows for the
convenient manipulations of spectral correlations by tuning
the relative delays between photons, without reconfiguring
the spatial network [20,27]. This scheme can operate in a
single spatial (transverse) mode and, therefore, enable the
realization of scalable temporal boson sampling using time-
varying dispersion [28]. However, such frequency-resolved
interference of more than two photons has not yet been
demonstrated.
Here, we demonstrate frequency-resolved quantum inter-

ference of three photons that are completely distinguishable
in time. We show that the interference observed in the
spectral correlations of detected photons can be manipu-
lated by changing the relative delays between the photons
at the input. The interference is completely wiped out for
longer delays between photons, that is when the spectral
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resolution of the detectors is not sufficient to erase the
temporal distinguishability of the photons. Moreover, we
observe that the symmetries of the optical network, and the
spectral wave functions of photons are reflected in the
measured spectral correlations. Finally, we also demon-
strate spectral correlations in inverse-HOM interference
using two time-bin entangled photons where both photons
arrive either “early” or “late” [29]. In this case, we observe
that the interference is sensitive to the phase between the
two components of the entangled state, unlike the case of
unentangled photons where interference is insensitive to
small fluctuations in delay between the photons. Our
experimental setup could easily be extended to introduce
time-varying dispersion using phase modulators and realize
the temporal boson sampling scheme of Ref. [28].
To demonstrate our scheme, we discuss first the inter-

ference of two temporally distinguishable photons in our
setup (Fig. 1). The two-photon interference can be analyzed
using the spectral correlation function Γðω1;ω2; τÞ, which
is the probability of detecting two photons at the two
detectors, with frequencies ω1 and ω2, respectively,
and τ ¼ t2 − t1 is the relative delay between photons at
the input. The correlation function in our setup is given
by [22,23]

Γðω1;ω2; τÞ ¼ jψ1ðω1Þψ2ðω2Þe−iðω1t1þω2t2Þ

þ ψ1ðω2Þψ2ðω1Þe−iðω2t1þω1t2Þj2; ð1Þ

where ψ1ð2ÞðωÞ is the spectral wave function of the first
(second) photon. The spectral correlation function depends
on t1 and t2 only through the relative delay τ and exhibits
interference fringes as a function of ðω1 − ω2Þ, with fringe

separation 2π=τ [28]. Furthermore, because the photons are
in a single spatial mode, the unitary transformation describ-
ing our optical network adds an overall phase to the
photonic wave functions and, therefore, does not contribute
to the interference.
In our experiment, we generate photon pairs using

spontaneous parametric down-conversion (SPDC)
(Fig. 1). A periodically poled potassium titanyl phosphate
(PPKTP) crystal (30 mm length) is pumped using a pulsed
(≈1.6 ps) Ti:sapphire laser (≈775.5 nm, 50 mW) which
generates orthogonally polarized, spectrally degenerate
photon pairs at telecom wavelengths via a Type-II collinear
SPDC. We separate the two orthogonally polarized photons
using a polarization beam splitter (PBS) and introduce a
relative delay (τ) between them. We rotate the polarization
in one of the arms such that the two photons are identically
polarized and collect them into a single fiber using a beam
splitter. We then use a chirped fiber Bragg grating (CBG),
two superconducting nanowire detectors (SNSPDs), and a
time-interval analyzer (TIA) to measure the spectral corre-
lations between photons. This setup realizes a time-of-
flight spectrometer where the arrival time of dispersed
photons is used to infer their frequency spectrum
[22,23,35–37]. Specifically, the frequency ωi of a photon
detected at the detector i is related to the time-of-arrival tdi
at the detector as ðωi − ω0Þ ¼ ðtdi − td0iÞ=ϕ00. Here, ω0 is the
peak frequency of the photonic spectral wave packet and td0i
is the peak arrival time of the photonic temporal wave
packet at the detector i. ϕ00 ≃ 3196 ps2 is the group delay
dispersion (GDD) of the CBG. In our measurements, we set
the central frequency ω0 (corresponding to the time td0) to
be zero such thatωi is actually the detuning from the central
frequency. The spectral resolution ðδωÞ of our spectrometer
is limited by the timing jitter (≈100 ps) of the nanowire
detectors and is ≈5 GHz. Furthermore, the finite delay
between the input photons contributes to the timing
uncertainty in td0 and marginally lowers the spectral
resolution of our spectrometer for input delay values
approaching the inherent timing jitter of the detectors.
Figures 2(a)–2(d) show quantum interference fringes in

the measured spectral correlations [Γðω1;ω2Þ, twofold
coincidences] for different delays between the two photons.
The interference fringes can be seenmore clearly by plotting
the number of coincidences as a function of the frequency
separationω2 − ω1 [Figs. 2(i)–2(l)]. As expected, the fringe
separation decreases as 1=τ [Fig. 2(m)]. Moreover, we see
that the visibility (see the SupplementalMaterial [30]) of the
interference decreases with increasing delay [Fig. 2(n)],
disappearing completely for τ ≳ 150 ps [Fig. 2(d)]. This is
because of the residual distinguishability following spec-
trally resolved detection for time delays that approach the
inverse of the spectral resolution δω. The interference
visibility could, in principle, be restored by increasing the
spectral resolution of the detector so that the condition
δω ≫ 1=τ is satisfied [20,27,28]. Our experimental results
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FIG. 1. Schematic of the experimental setup to observe fre-
quency-resolved two-photon interference. Orthogonally polar-
ized photon pairs are generated using Type-II SPDC in a PPKTP
crystal, separated using a polarization beam splitter (PBS),
delayed and recombined using a beam splitter (BS) after
polarization (red arrows) rotation in one of the arms. A chirped
Bragg grating (CBG) with a spectral bandwidth more than that of
the generated photon pairs, and a time-interval analyzer (TIA)
implement a time-of-flight spectrometer (see the Supplemental
Material [30]). HWP: half-wave plate (to generate entangled
photon pairs), DM: dichroic mirror, PC: polarization controller,
PD: photo-diode.
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agree well with the simulation results [Figs. 2(e)–2(h)]. We
note that similar interference in spectral correlations has
been observed in Refs. [22,23] using the two spatial modes
of a HOM interference setup. By contrast, in our setup, the
two delayed photons are in a single spatial mode.
Furthermore, the large GDD of our CBG allows us to
observe interference between photons that are separated by
delays as long as 100 ps, which is more than 50 times
the single-photon temporal pulse widths (estimated to
be ≈1.55 ps).
Next we discuss the experimental setup and our obser-

vation of three-photon interference using frequency-
resolved detection. We pump the PPKTP crystal at higher
power (400mW) to ensure a higher probability of generating
two pairs of photons (see the Supplemental Material [30]).

We use a PBS and two nonpolarizing beam splitters to
probabilistically split the four photons into four spatial
modes [see Fig. 3(a)]. We then introduce relative delays
between the photons using two-photon interference mea-
surements as a calibration tool, and combine three of the four
spatial modes into a single fiber using a tritter (3 × 3 beam
splitter). As before, the three photons are then dispersed
using the CBG, separated using a tritter and their spectral
correlations are measured using three detectors connected to
the TIA. The fourth photon is used to trigger the TIA.
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FIG. 2. (a)–(d) Measured and (e)–(h) simulated spectral corre-
lations [Γðω1;ω2; τÞ] between two photons with varying relative
delay τ at the input. (i)–(l) Measured coincidence counts
(maximum normalized to unity) as a function of frequency
separation ðω2 − ω1Þ. Measured (blue dots) and simulated (red
line) (m) fringe separation, and (n) visibility as function of the
delay τ. The delay between the photons was calibrated using
HOM interference.

SimulationExperiment

-125 1250

(b)

(c)

(e)

(f)

(g)

(i)

TIA

(a)

-250

250

-125

125

0

0.2 0.6 1
Norm. Coincidences 

(d) (h)

0.5

1.0

0

40200

FT

(j)

(k)

(l)

(m)

-250

250

-125

125

0

-250

250

-125

125

0

-250

250

-125

125

0

-125 1250

0.5

1.0

0

FT

0.5

1.0

0

FT

0.5

1.0

0

FT

Ref.

BS PPKTPTi:sapphire

Polarizer

BS

BS

PBS PC

CBG

FIG. 3. (a) Schematic of the setup to observe frequency-resolved
three-photon interference.ThePPKTPcrystal is strongly pumped to
efficiently generate twopairs of photonswhich are thenprobabilisti-
cally separated using a PBS and two nonpolarizing beam splitters.
(b)–(e) Measured and (f)–(i) simulated spectral correlations
between three photons (heralded by the fourth photon) with relative
delays ðτ21; τ31Þ ≈ ð0; 15Þ; ð20; 40Þ; ð10; 25Þ; ð350; 175Þ ps. (j)–
(m) Fourier transform (FT) of the three-photon correlation function
[in (b)–(e)], integrated over ω3. The peaks (highlighted by red
dashes) indicate beat notes associated with multiple pairwise
interferences.
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Figures 3(b)–3(e) show the measured spectral correlations
between the three photons (using fourfold coincidence
detections) as a function of the frequency detuningsmeasured
at the second and the third detectors, relative to that of the first
detector, that is, ðω2 − ω1Þ and ðω3 − ω1Þ. We analyze
three different delay scenarios (1) ðτ21; τ31Þ ≈ ð0; 15Þ ps,
(2) (20,40) ps, and (3) (10,25) ps, where ðτ21; τ31Þ are the
delays of the second and the third photon, respectively,
relative to the first photon. We observe that the interference
landscape changes significantly with the relative delays
between photons. For delays symmetric under exchange of
two of the photons ðτ21; τ31Þ ≈ ð0; 15Þ and (20,40) ps, the
interference fringes are periodic along both axes. By contrast,
in the case of asymmetric delays (10,25) ps, the constructive
correlations are more prominent along the cross sections
ω2 ¼ ω1 (vertical), ω3 ¼ ω1 (horizontal), and ω2 ¼ ω3

(diagonal). However, irrespective of the delays between
the photons, we always observe a constructive interference
for zero frequency detuning, that is, when ω2 − ω1 ¼ 0 ¼
ω3 − ω1 [see Eq. (1)]. We also analyze the scenario when the
spectral resolution of our setup is not high enough to erase the
temporal distinguishability of photons [Fig. 3(e)], and, as
expected, we do not observe any interference.
We see that the interference patterns shown in

Figs. 3(b)–3(e) are symmetric under any permutation of
the frequency detunings, for instance,ω2 ↔ ω3 orω3 ↔ ω1,
etc. This permutation symmetry is simply a manifestation
of the symmetry of our optical network [20]. We again
emphasize that the interfering photons propagate in a single
fiber. The tritter, together with the three detectors, at the
output simply emulates a number-resolvingdetector anddoes
not contribute to the interference. Moreover, the interference
landscape is also symmetric under reflectionsωi ↔ −ωi, for
all i, where i ¼ 1,2,3 is the detector number, because of the
symmetric frequency spectra of the input photons [20].
The measured three-photon interference is dictated by the

3! three-photon detection amplitudes associated with the
possibleways inwhich the three photons can trigger the three
detectors. However, it is instructive to integrate the three-
photon correlation function over one of the frequencies (here
ω3) and analyze the reduced interference as a function of the
relative frequency detunings at the other two detectors
ðω2 − ω1Þ (see the Supplemental Material [30]). Fourier
analysis of this 1D plot then reveals the beat notes corre-
sponding to themultiple pairwise interference terms between
the three photons [Figs. 3(j)–3(m)]. When the input delay
values are configured to be ðτ21; τ31Þ ≈ ð0; 15Þ ps, there is
only one possible delay combination between any two
photon pairs and the corresponding Fourier transform shows
a single peak (highlighted by the dashed red line) at 15.7 ps.
For (20,40) ps, there are two possible combinations and
accordingly we observe two peaks in the Fourier transform,
at 20.9 ps and 40.4 ps. For (10,25) ps, there are three possible
combinations and, as expected, we see three beat notes in the
Fourier transform, at 10.4 ps, 15.7 ps, and 26.1 ps. The peak

delay values agree well with the expected values to within
1.3 ps, the temporal resolution of the Fourier transform.
We note that the beam splitters used in our setup to

separate photon pairs of the same polarization are not
deterministic and lead to possibilities where two photons
always arrive with zero delay (see the Supplemental
Material [30]). However, these possibilities do not add
any new beat notes to the interference pattern, and could
easily be removed using two PPKTP crystals to generate
two photon pairs. Nevertheless, our experimental observa-
tions match very well with our simulations. We achieve a
fidelity of ≈0.95 for each of the three scenarios presented in
Figs. 3(b)–3(d). The small loss in observed fidelities is
because of the small ellipticity in the joint spectral intensity
of the photons (see the Supplemental Material [30]).
Finally, we demonstrate frequency-resolved interference

of two photons which are entangled in their arrival times. In
particular, we consider time-bin entangled states of the
form jΨi ¼ j2iej0il − e−iφj0iej2il, where both photons at
the input are in the “early” time bin (at time t1) or in the
“late” time bin (at t2), and φ is the phase associated with the
delay between the photons. The spectral correlation func-
tion at the output of our optical network (Fig. 1) is then
given as

Γðω1;ω2; τÞ ¼ jψ1ðω1Þψ2ðω2Þe−iðω1þω2Þt1

þ ψ1ðω2Þψ2ðω1Þe−iðω1þω2Þt2 j2: ð2Þ

The correlation function now exhibits interference fringes
as a function of the two-photon phase φ ¼ ðω1 þ ω2Þτ,
where τ ¼ t2 − t1 is the relative delay between the photons.
This interference is similar to the time-reversed HOM
interference where the two photons are path entangled, that
is, they arrive together at either port of the beam splitter
[29]. The two photons can then exit the beam splitter in the
same port or in different ports, depending on the phase φ.
To generate time-bin entangled photon pairs we add a

half-wave plate, set at an angle of 22.5°, before the PBS in
the setup of Fig. 1. The HWP acts as a 50∶50 BS in the
polarization domain and, when the two-photon spectral
wave function is symmetric, it leads to a polarization
entangled two-photon state of the form jΨi ¼ j2iHj0iV −
j0iHj2iV [33,36,38]. As before, we use a PBS to introduce
a relative delay between the two orthogonal polarization
modes and achieve the time-bin entangled state jΨi ¼
j2iej0il − e−iφj0iej2il. The phase φ was actively stabilized
using a continuous-wave telecom laser with tunable wave-
length (see the Supplemental Material [30]). We also used a
bandpass filter (with 75 GHz bandwidth) to ensure that the
two-photon spectral amplitude is symmetric, and verify the
entanglement using polarization- and time-resolved coinci-
dence measurements (see the Supplemental Material [30]).
Figures 4(a) and 4(b) show the measured and simulated

spectral correlations for the time-bin entangled two-photon
state where we set t2 − t1 ¼ 40 ps, much longer than the
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single-photon pulsewidths (estimated to be ≈5.4 ps follow-
ing the bandpass filter). We observe interference fringes in
the correlations as a function of the two-photon phase
ðω1 þ ω2Þτ [Fig. 4(c)]. This contrasts with the interference
for a separable state of two-photons with a delay (Fig. 2),
where interference pattern is rotated by 90° because of its
dependence on ðω1 − ω2Þτ. Furthermore, as in the time-
reversed HOM interference, the interference observed here
is sensitive to small changes in the two-photon phase φ. For
example, by introducing an additional small delay Δτ
(few fs) such that Δφ ¼ ðω1 þ ω2ÞΔτ ¼ π, we observe
the complimentary interference where the peaks are
replaced by troughs and vice versa [Figs. 4(d)–4(f)]. We
note that the marginal decrease in the observed visibility for
interference of time-bin entangled photons compared to the
unentangled photons (Fig. 2) is because of the imperfec-
tions in the entangled state preparation and the sensitivity to
residual path length fluctuations in the interferometer (see
the Supplemental Material [30]).
In summary, we have demonstrated frequency-resolved

interference of three photons that are separated in time
using a single dispersive element. Using a larger number of
photons and a time-varying dispersion element, such as a
phase modulator, our setup could realize temporal boson
sampling in a single spatial mode with easily reconfig-
urable unitary transformation and explore phase transitions
in the complexity of sampling [28,30,39]. Our scheme can
also be used to implement scalable multiboson correlation
sampling where the photonic correlations are sampled over
spatial as well as temporal or spectral modes at the input or
ouput of a random linear optical network with multiple
spatial modes [24,27]. Finally, these experimental results
may pave the way to new techniques for the experimental
characterization of optical networks and their input pho-
tonic states with potential application in quantum informa-
tion processing and metrology [20,40,41].
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