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I. GATE EXCITATION DENSITY MATRIX DYNAMICS

Here, we will outline the solution to the gate excitation density matrix given in Eq. (2) of the main text. To

first describe the EIT dynamics of the source field, we introduce the bosonic operator Ê†(z, t), which creates a source

photon at position z and time t, and similarly introduce the operators P̂ †(z, t), Ŝ†(z, t) and Ĉ†(z, t) which create
collective atomic excitations in |p〉, |s〉 and |c〉 respectively. In a one-dimensional approximation, these operators are
governed by the following Heisenberg equations of motion,

∂tÊ(z, t) = −c∂zÊ(z, t) + iGP̂ (z, t), (S1)

∂tP̂ (z, t) = iGÊ(z, t) + iΩsŜ(z, t)− γP̂ (z, t) + F̂ (z, t), (S2)

∂tŜ(z, t) = iΩsP̂ (z, t)− i
∫ L

0

dz′Vz,z′Ĉ
†(z′, t)Ĉ(z′, t)Ŝ(z, t), (S3)

∂tĈ(z, t) = −i
∫ L

0

dz′Vz,z′ Ŝ
†(z′)Ŝ(z′)Ĉ(z, t). (S4)

Here, c is the vaccum speed of light, G = g
√
ρa is the collectively enhanced coupling of the |g〉− |p〉 transition (where

g is the single atom coupling and ρa is the homogenous atomic density), Ωs is the Rabi frequency of the classical
crontrol field driving the |p〉−|s〉 Rydberg transition, and γ is the decay rate of the intermediate state |p〉. We assume

low-intensity source and gate fields such the |s〉 − |s〉 and |c〉 − |c〉 interactions can be neglected. The operator F̂ (z, t)
describes Langevin noise associated with the decay of the intermediate state [S1].

Considering a system of ng stored gate excitions and ns incident source photons, we introduce |Ψng,ns
〉 as the initial

state. In the Heisenberg picture, this can be constructed explicitly as,

|Ψng,ns
〉 =

1√
ng!ns!

[
1√
c

∫ ∞
−∞

dzh(−z/c)Ê†(z, 0)

]ns

×

[∫ L

0

d~zng
C(~zng

)Ĉ†(z1, 0) . . . Ĉ†(zng
, 0)

]
|0〉, (S5)

where h(t) is the temporal mode of the incident (uncorrelated) source field, and C(~zng ) is the initial spatial mode of
the stored gate excitations where ~zng ≡ z1, z2, · · · , zng denotes the vector of gate excitation coordinates. To determine
the scattering-induced spin wave decoherence, it is necessary to consider the density matrix dynamics of the stored
gate excitations. For this, we first define the operator ρ̂(~xng

, ~yng
, t)

ρ̂(~xng , ~yng , t) =

ng∏
i=1

Ĉ†(xi, t)

ng∏
i=1

Ĉ(yi, t). (S6)

This can then be used in conjuction with Eq. (S5) to define the elements of the stored spin wave density matrix as

ρns
(~xng

, ~yng
, t) = 〈Ψng,ns

|ρ̂(~xng
, ~yng

, t)|Ψng,ns
〉, (S7)

which characterises the spatial coherence between different configurations ~xng
and ~yng

of the stored gate excitations
in response to scattering ns source photons. To evaluate the time dynamics of ρns

(~xng
, ~yng

, t), we begin with the
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equation of motion for the coherence operator,

∂tρ̂(~xng , ~yng , t) = i

∫ L

0

dz

[∑
k

Vz,xk
−
∑
k

Vz,yk

]
Ŝ†(z, t)ρ̂(~xng , ~yng , t)Ŝ(z, t), (S8)

which can be readily derived from Eq. (S4). The solution to the spin wave operator Ŝ(z, t) will be a convolution of
the form

Ŝ(z, t) =

∫ ∞
−∞

dt′ê(z, t− t′)Ê(0, t′), (S9)

where ê(z, t) is an operator object which is intrinsically nonlinear in the stored spin wave density Ĉ†(z, t)Ĉ(z, t). The

general solution also includes terms propotional to Ê(z, 0), P̂ (z, 0), Ŝ(z, 0) and F̂ (z, 0). However, since all our results
only involve normally ordered expectation values, such terms give vanishing contributions for the initial state in Eq.
(S5) [S2, S3]. With the definition for Ŝ(z, t) in Eq. (S9), the equation of motion for ρng (~xng , ~yng , t) can then be
written as,

∂tρns
(~xng

, ~yng
, t) = i

ns
c

∫ L

0

dz

[∑
k

Vz,xk
−
∑
k

Vz,yk

]∫ ∞
−∞

dt′h∗(t′)

∫ ∞
−∞

dt′′h(t′′)

× 〈Ψng,ns−1|ê†(z, t− t′)ρ̂(~xng , ~yng , t)ê(z, t− t′′)|Ψng,ns−1〉,

(S10)

where we have used the property Ê(0, t)|Ψng,ns
〉 = Ê(−ct, 0)|Ψng,ns

〉 =
√
ns/ch(t)|Ψng,ns−1〉. In the limit where the

source field is narrowband in relation to the EIT bandwidth, we can make the replacement ê(z, t) = ê(z)δ(t), where

ê(z) defines the static solution to Ŝ(z, t) as Ŝ(z, t → ∞) = ê(z)Ê(0, t → ∞). This can be obtained by solving Eqs.
(S1 - S3) in the steady state to yield

ê(z) = − G

Ωs

1

1 + i
∫
dz′Vz,z′Ĉ†(z′)Ĉ(z′)

exp

(
db
zb

∫ z

0

dz′

[
1

1 + i
∫
dz′′Vz′,z′′Ĉ†(z′′)Ĉ(z′′)

− 1

])
, (S11)

where Vz,z′ = γVz,z′/Ω
2
s is the rescaled interaction potential, and 2db = 2G2zb/cγ is the optical depth per blockade

radius, where zb is defined according to Vzb,0 = Ω2
s/γ. Eq. (S10) can then be written as,

∂tρns
(~xng

, ~yng
, t) = i

ns
c
|h(t)|2

∫ L

0

dz

[∑
k

Vz,xk
−
∑
k

Vz,yk

]
〈Ψng,ns−1|ê†(z)ρ̂(~xng

, ~yng
, t)ê(z)|Ψng,ns−1〉. (S12)

To proceed, we note that since the operator ê(z) is constructed from the local density operator Ĉ†(z)Ĉ(z), it

conserves the total number of gate excitations. As such, the state |C(~xng
)〉 =

∏ng

i=1 Ĉ
†(xi)|0〉 is an eigenstate of ê†(z)

with an eigenvalue e∗(z, ~xng
) defined by ê†(z)|C(~xng

)〉 = e∗(z, ~xng
)|C(~xng

)〉, which can be readily derived from Eq.
(S11) as

e(z, ~xng
) = − G

Ωs

1

1 + i
∑
k Vz,xk

exp

(
db
zb

∫ z

0

dz′
[ ∑

k Vz,xk

i−
∑
k Vz,xk

])
. (S13)

Upon then redefining ρ̂(~xng
, ~yng

) = |C(~xng
)〉〈C(~yng

)|, it follows that the equation of motion for ρns
(~xng

, ~yng
, t) can

be written as

∂tρns
(~xng

, ~yng
, t) = nsφng

(~xng
, ~yng

)ρns−1(~xng
, ~yng

, t), (S14)

where

φng (~xng , ~yng ) = i
db
zb

Ω2
s

G2

∫ L

0

dz

[∑
k

Vz,xk
−
∑
k

Vz,yk

]
e∗(z, ~xng )e(z, ~yng ), (S15)

which defines the expression in Eq. (3) of the main text as Φng
(~xng

, ~yng
) = 1+φng

(~xng
, ~yng

). The system of equations
for ρns

(~xng
, ~yng

, t) goverened by Eq. (S14) can then be solved recusively in ns to yield the final expression for the
many-body density matrix given in Eq. (2) of the main text.
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II. SPIN WAVE DECOHERENCE IN THE INFINITE db LIMIT

Here, we will derive the simple expression for the many-body density matrix in the infinite db limit. Upon spatially
ordering all gate excitations, whereby x1, y1 are the coherence coordinates of the first excitation, x2, y2 are the
coordinates of the second and so on, then the result for Φng (~xng , ~yng ) can be approximated as

Φng
(~xng

, ~yng
) ≈ 1 + φ1(x1, y1) + (1− p<2)φ1(x2, y2) + (1− p<3)φ1(x3, y3) + · · ·+ (1− p<ng

)φ1(xng
, yng

), (S16)

where φ1(xk, yk) is given by Eq. (S15), and p<k is the probability that a given source photon scatters before it reaches
the kth excitation. Here, it is implicitly assumed that p<k is close to unity, and in the infinite db limit, one can make
the approximation p<k = 1. In this case, Φng

(~xng
, ~yng

) ≈ 1 + φ1(x1, y1) = Φ1(xmin, ymin) as given by Eq. (4) of the
main text.

III. APPROXIMATE MODEL OF RETRIEVAL EFFICIENCY

Here, we will derive the approximate model of retrieval efficiency presented in Eq. (5) of the main text. We start
by considering a system of ng stored gate excitations, and ns photons in the incident source field. We assume a dilute
system of excitations, such that the contributions from configurations of excitations with overlapping blockde radii
can be neglected. The storage of such configurations will anyways be supressed due to self-blockade between gate
photons. As a second simplification, we assume that the scattering induced localisation of one gate excitaiton does
not affect the mode shape, and thus retrieval, of any other. Formally, this approximation can be implemented by

assuming the gate photons are stored in non-overlapping modes, and we introduce ρ
(k)
0 (xk, yk) as the initial single

body density matrix of the kth excitation. With this simplification, the initial many-body density matrix is given by

the pure (uncorrelated) state ρ0(~xng
, ~yng

) = ρ
(1)
0 (x1, y1)ρ

(2)
0 (x2, y2) · · · ρ(ng)

0 (xng
, yng

). The efficiency of retrieving the

kth excitation after source photon scattering can be calculated from its reduced density matrix ρ
(k)
ns (x, y), which can

be calculated from the full many-body density matrix according to

ρ(k)
ns

(x, y) = ng

∫
dr1 · · · drk−1drk+1 · · · drng

ρns
(r1, · · · , rk−1, x, rk+1, · · · , rng

, r1, · · · , rk−1, y, rk+1, · · · , rng
). (S17)

Assuming that the medium is much longer than the stored spin wave mode, the explicit form of ρ
(k)
ns (x, y) is given by,

ρ(k)
ns

(x, y) =
[
1 +Ak−1φ(x, y)

]ns
ρ

(k)
0 (x, y), (S18)

where 1−A is the scattering probability per gate excitation defined according to,

A = exp

(
db
zb

∫ ∞
−∞

dz′
[
Vz′,0

i− Vz′,0
− Vz′,0
i+ Vz′,0

])
, (S19)

= exp

(
2dbRe

[
2π

3
(−1)11/12

])
, (S20)

≈ exp(−4db). (S21)

The retrieval efficiency of the kth excitation is then calculated as ηk(ns) = R
[
ρ

(k)
ns (x, y)

]
. Here, R is a generic linear

function for determining the retrieval efficiency from any given one-body density matrix and pulse sequence, whose
explicit form is detailed in Ref. [S4]. To simplify the calculation of ηk(ns), we assume that the blockade radius is
much smaller than the spatial extent of each spin wave mode. In this situation, photon scattering will practically
cause complete localisation of a given stored gate excitation. The quantity φ(x, y) characterising this decoherence in
Eq. (S18) can then be approximated by

φ(x, y) =

{
0 if x = y
A− 1 otherwise

(S22)

However, since the retrieval efficiency is predominatly determined by the spin wave coherences, it suffices to neglect
the narrow digonal feature in φ(x, y) when caluclatuing ηk(ns). Using the approximation φ(x, y) ≈ A−1, the retrieval
efficiency of the kth excitation is then given by

ηk(ns) =
[
1− p(1− p)k−1

]ns R
[
ρ

(k)
0 (x, y)

]
, (S23)
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where we have used the fact that the scattering probability per gate excitation is given by p = 1 − A. We can then
calculate the total number of retrieved gate photons from the stored ng-excitation Fock state after scattering ns source
photons as

n̄g(ng, ns) =

ng∑
k=1

ηk(ns) = ηR

ng∑
k=1

[
1− p(1− p)k−1

]ns
, (S24)

where we have made use of the fact that the retrieval function is linear, and further assumed that the retrieval

efficiency in the absence of photon scattering is the same for all gate excitations, i.e., R
[
ρ

(k)
0 (x, y)

]
= ηR. Finally,

taking into account the coherent state nature of the involved fields, we can calculate the average number of retrieved
gate photons by performing a coherent state average of n̄g(ng, ns) over the number distribution of the gate and source
fields, which ultimately yields

ᾱg = e−αge−αs

∞∑
ng=1

∞∑
ns=0

(αg)
ng

ng!

(αs)
ns

ns!
n̄g(ng, ns), (S25)

= ηRe
−αge−αs

∞∑
ng=1

∞∑
ns=0

(αg)
ng

ng!

(αs)
ns

ns!

ng∑
k=1

[
1− p(1− p)k−1

]ns
, (S26)

= ηRe
−αg

∞∑
ng=1

(αg)
ng

ng!

ng∑
k=1

exp
[
−αsp(1− p)k−1

]
. (S27)

Finally, we can calculate the retrieval efficiency as the ratio of the number of retrieved gate photons with and without
source field scattering,

η = ηR
e−αg

αg

∞∑
ng=1

(αg)
ng

ng!

ng∑
k=1

exp
[
−αsp(1− p)k−1

]
, (S28)

as given by Eq. (5) of the main text.

IV. SINGLE PHOTON SUBTRACTION VIA DECOHERENCE

Here we will derive a simple estimate for the efficiency of single photon subtraction based on the described decoher-
ence mechanism. For this, first consider the operation using Fock states of the incoming gate and source fields. Let
|ng〉 describe the gate field containing ng photons, and |ns〉 describe the source field containing ns photons. Through
the combination of gate storage, source field scattering and gate retrieval, a perfectly functioning single photon sub-
tractor will achieve the mapping |ng〉 7→ |ng − 1〉. Taking into account a finite storage and retrieval efficiency due to
linear losses, this photon subtraction can be achieved either from failed storage or failed retrieval, the latter of which
is controlled via scattering induced decoherence.

To calculate the overall success probability for this to occur, let us first consider the storage losses. For this, we
assume that storage is a linear process, and that each gate photon is stored with an probability ηS . The probability

that all ng photons are succesfully stored, P
(S)
0 (ng), and the probability that one fails to store, P

(S)
1 (ng), are then

each given by

P
(S)
0 (ng) = η

ng

S (S29)

P
(S)
1 (ng) = ng(1− ηS)η

ng−1
S (S30)

Assuming that n̄g photons are stored, we then need to consider the subsequent decoherence dynamics from source
field scattering. The probability p0(n̄g) that an incoming source photon fails to scatter from any of the n̄g stored gate
excitations is given by

p0(n̄g) = (1− p)n̄g , (S31)

and the probability p1(kg) that a source photon scatters from the kth
g excitation is given by,

p1(kg) = p(1− p)kg−1, (S32)
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where p is the scattering probability per gate excitation. The probability P
(D)
0 (n̄g, ns) that none of the ns incoming

source photons are scattered, such that n̄g coherent excitations remain after the source field propagation, is then
simply given by,

P
(D)
0 (n̄g, ns) = [p0(n̄g)]

ns (S33)

We then need to consider the probability that one gate photon is decohered after the source field scattering, which
therefore leaves n̄g−1 retrievable gate excitations. For this, the probability that ns incoming source photons decohere
the kth

g gate excitation only can then be considered as a sum of contributions: either all ns source photons scatter off

the kth
g excitation, or ns − 1 source photons scatter off the kth

g excitation while one is transmitted, or ns − 2 source

photons scatter off the kth
g excitation while two are transmitted, and so on. The individual probabilities, P(kg,ks)

n̄g,ns
,

that ks out of the ns incoming source photons scatter off the kth
g gate excitation are then given by,

P(kg,ks)
n̄g,ns

=

(
ns
ks

)
[p1(kg)]

ks [p0(n̄g)]
ns−ks , (S34)

where the binomial coefficient takes into account all the relevant scattering possibilities. The probability that at least

one source photon scatters off the kth
g gate excitation is then given by

∑ns

ks=1 P
(kg,ks)
n̄g,ns

, such that the probability that
only one gate excitation is left decohered after the passage of ns source photons is given by

P
(D)
1 (n̄g, ns) =

n̄g∑
kg=1

ns∑
ks=1

P(kg,ks)
n̄g,ns

(S35)

=

n̄g∑
kg=1

{
ns∑
ks=0

(
ns
ks

)
[p1(kg)]

ks [p0(n̄g)]
ns−ks − [p0(n̄g)]

ns

}
(S36)

=

n̄g∑
kg=1

{[p1(kg) + p0(n̄g)]
ns − [p0(n̄g)]

ns} (S37)

We finally need to describe the linear retrieval losses, where we account for a finite retrieval probability of ηR per gate
excitation. Assuming that we are left with ñg coherent gate excitations after source field scattering, the probability

that all are successfully retrieved, P
(R)
0 (ñg), and the probability that one is lost during retrieval, P

(R)
1 (ñg), are then

each given by

P
(R)
0 (ñg) = η

ñg

R (S38)

P
(R)
1 (ñg) = ñg(1− ηR)η

ñg−1
R (S39)

The overall success probability for single photon subtraction P1(ng, ns) can than be evaluated by summing all contri-
butions where exactly one photon is removed either during storage or retrieval,

P1(ng, ns) = P
(S)
1 (ng)P

(D)
0 (ng − 1, ns)P

(R)
0 (ng − 1)

+P
(S)
0 (ng)P

(D)
1 (ng, ns)P

(R)
0 (ng − 1)

+P
(S)
0 (ng)P

(D)
0 (ng, ns)P

(R)
1 (ng)

(S40)

The first line corresponds to single photon loss during storage, followed by perfect retrieval of all remaining stored
excitations. The second line corresponds to successful storage of all gate photons, while one is removed upon retrieval
due to scattering induced decoherence. Finally, the third line corresponds to successful storage of all gate photons,
while one is removed upon retrieval due to linear losses. We can then use this result to obtain the success probability
P1(ng, αs) for single photon subtraction using a coherent source field containing an average number of photons αs by
performing a coherent state average of P1(ng, ns) over the number distribution of the source field,

P1(ng, αs) = e−αs

∞∑
ns=0

αns
s

ns!
P1(ng, ns) (S41)

which is valid for ng > 0. At this point, we can examine the effects of imperfect storage and retrieval. For a given ng,

we can find the source field intensity α
(opt)
s that optimises P1(ng, αs) under conditions of perfect storage and retrieval,
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(a) (b) (c)

(d) (e) (f)

FIG. S1. (a-c) The subtraction efficiency P1(ng, αs) for a Fock state with ng = 2 incident gate photons is plotted as a
function of the efficiency of storage, ηS , and retrieval, ηR. The blockaded optical depth is db = 0.5, 1 and 5 in (a), (b) and

(c) respectively, and in each figure, we fix the coherent source field intensity to α
(opt)
s which optimises P1(ng, αs) for perfect

storage and retrieval, ηS = ηR = 1. P1(ng, αs) is plotted as a function of the combined effieincy for storage and retrieval ηSηR
(specifically for ηS = ηR) for db = 0.5, 1 and 5 in (d), (e) and (f) respectively.

ηS = ηR = 1. Considering a two-photon Fock state, we plot P1(ng, α
(opt)
s ) against ηS and ηR in Fig. S1, and further

examine its scaling with the combined effieiency for storage and retrieval, ηSηR.
Finally, considering a coherent state of the gate field, we can define the averaged single photon subtraction efficiency

F defined in Eq. 6 of the main text by performing a coherent state average over the number distribution of the gate
field,

F = e−αg

1 +

∞∑
ng=1

(αg)
ng

ng!
P1(ng, αs)

 . (S42)

Note that we implicitly set P1(ng = 0, αs) = 1, which assumes the subtraction is perfect for the vacuum component
of the gate field. By optimisng F with respect to αs for a given αg, we obtain the blue curve in Fig. 4 of the main
text (where we consider perfect storage and retrieval efficiency).

V. SINGLE PHOTON SUBTRACTION VIA SATURABLE ABSORPTION

Here, we will discuss the subtraction efficiency of the single photon absorber using a free-space Rydberg superatom,
as recently demonstrated in [S5]. The general mechanism in this case relies on saturating the absorption of an
optically thick ensemble via Rydberg blockade. Here, engineered dephasing on the Rydberg state with a rate Γ is
used to achieve incoherent photon storage with a probability p. By working with a medium that is shorter than the
blockade volume, the produced single Rydberg excitation then prevents any further photon absorption. For a large
single photon detuning, the remaining off-resonant two-level medium is largely transparent to all subsequent photons,
which scatter with a small residual probability p̃. Efficient single photon absorption with this mechanism then requires
a large absorption probability p, while simultaneous minimising the residual photon losses.

This scheme is realised by coupling the quantised gate field to the low-lying excited state |p〉 with a large single
photon detuning ∆. A continuously applied control field then couples |p〉 to the Rydberg state |s〉 on two-photon

resonance with a Rabi frequency Ω. As before, one can introduce the operator Ê†(z, t) to describe the creation of a
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gate photon, and introduce P̂ †(z, t) and Ŝ†(z, t) to describe the creation of collective atomic excitations in |p〉 and
|s〉. For a single incoming photon, the system dynamics are characterised by the following equations,

∂tÊ(z, t) = −c∂zÊ(z, t) + iGP̂ (z, t), (S43)

∂tP̂ (z, t) = iGÊ(z, t) + iΩŜ(z, t)− [i∆ + γ]P̂ (z, t), (S44)

∂tŜ(z, t) = iΩP̂ (z, t)− ΓŜ(z, t). (S45)

Here, Langevin noise can be neglected for the reasons outlined in Sec. I. To zeroth order in the photon bandwidth,
this system of equations reduces to a single propagation equation for Ê(z) as

∂zÊ(z) = − 1

labs

1
ΓEIT

Γ + 1 + i∆
γ

Ê(z) (S46)

where ΓEIT = Ω2/γ is the resonant EIT bandwidth. For a medium of length zb, the transmitted photon operator can
be solved as

Ê(zb) = exp

[
−db

1
ΓEIT

Γ + 1 + i∆
γ

]
Ê(0) =

√
1− peiθÊ(0), (S47)

where θ is the phase of the transmitted field, and p is the absorption probability, the latter of which is given by

p = 1− exp

−2db
1 + ΓEIT

Γ(
1 + ΓEIT

Γ

)2
+
(

∆
γ

)2

 . (S48)

The residual (dissipative) scattering probability of the blockaded ensemble after photon absorption can then be
straightforwardly obtained from the above expression by setting ΓEIT = 0 to give

p̃ = 1− exp

−2db
1

1 +
(

∆
γ

)2

 . (S49)

To analyse the subtraction efficiency, first consider a Fock state of the incoming gate field containing ng photons.
Treating the photons sequentially, the probability that exactly one is absorbed into the medium, whilst all others are
transmitted can be calculated as

P1(ng) =

ng∑
k=1

p(1− p)k−1(1− p̃)ng−k. (S50)

The subtraction efficiency for a coherent state with an average number of αg photons is then given by

F = e−αg

1 +

∞∑
ng=1

(αg)
ng

ng!
P1(ng)

 . (S51)

For a given db and αg, the optimal subtraction efficiency can be determined from Eq. (S51) by maximising F with
respect to ∆/γ and ΓEIT/Γ to obtain the red dashed curve in Fig. 4 of the main text. Here, the additional constraint
ΓEIT/Γ� 1 is imposed to ensure that incoherent photon absorption dominates over the dissipative scattering.
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