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Supplemental Material for “Kramers’ degeneracy for open systems in thermal
equilibrium”

The Supplemental Material is organized as follows: In Sec. 1, we complete the steps in the proof of the Kramers’
theorem for Lindbladians. We also explain why the degeneracy only appears for fermonic systems (as opposed to
spin systems) and describe an analogous Kramers’ degeneracy for thermal quantum channels. In Sec. 2, we show
how the Kramers’ degeneracy manifests in the single-particle spectrum of “quadratic Lindbladians”. Sec. 3 shows
that microreversibility of the Lindbladian arises naturally from TRS-invariant system-bath coupling in the case of
a thermal bath. Sec. 4 describes linear response in open quantum systems, suggesting that the degeneracy can be
probed via tunneling spectroscopy experiments.

1. KRAMERS’ THEOREM AND GREEN’S FUNCTION DEGENERACY

Orthogonal solutions. We complete the steps of the generalized Kramers’ theorem outlined in the main text. From
the main text, we have seen that if the Lindbladian satisfies a microreversibility condition: L†− = Q−1

− T −1
− L−T−Q−

with L−(ri) = Λiri,L†−(li) = Λ∗i li, then ri and T Q(li) are both right eigenoperators of L− with eigenvalue Λi. We

now proceed to show that these are indeed orthogonal solutions by showing that Tr[l†iT Q(li)] = 0:

Tr[l†iT (qli)T
−1] = Tr[(T (T (qli)T

−1)T−1)†T liT
−1] (S1)

= Tr[(T 2(qli)T
−2)†T liT

−1] (S2)

= −Tr[(qli)
†T liT

−1] (S3)

= −Tr[l†i qT liT
−1] (S4)

= −Tr[l†iT (qli)T
−1] (S5)

= 0. (S6)

In Eq. (S1), we have used the relation:

Tr[(TψT−1)†(TφT−1)] = Tr[(Uψ∗U†)†(Uφ∗U†)] (S7)

= Tr[UψTU†Uφ∗U†] (S8)

= Tr[ψTφ∗] (S9)

= Tr[φ†ψ], (S10)

for any ψ, φ, where T = UK . In Eq. (S4), we have used T 2(qli) = qT 2(li) = −qli, i.e. li is an eigenoperator of the
odd-superparity sector of the Lindbladian.

Definition of the Green’s function. Here we highlight an important subtlety regarding the definition of the
Green’s function Eq. (13), and in particular the interpretation of the time-evolved fermion operator f̂i,σ(t).

A general Green’s function of two observables GAB(t) = Tr(A(t)BρSS) describes the influence of a perturbation at
time 0 on the outcome of a measurement at time t. Since fermion parity symmetry is fundamental, it is not possible to
perturb the system by a fermion-parity-odd operator such as f†i,σ; rather, in any physical protocol where the Green’s
function is measured, the initial perturbation will involve some exchange of fermions between the system and some
probe. Thus, we should understand that the operator B is a product of f̂i,σ with some fermionic operator acting on
the probe. (See Section 4 of the SM for an example of this construction in the context of tunneling spectroscopy.)

We heuristically write B ∼ f†i,σfpr, where fprobe is an unspecified fermionic operator acting on the probe, ensuring
that B itself is a superparity-even operator. Similarly, the observable A that we measure at time t will be a product
of fermion-superparity-odd operators on the system and probe: A ∼ fi,σf ′pr for some other probe operator f ′pr.

With this in mind, the Heisenberg picture evolution of the observable A is given by A(t) = eL
†t[A], where L† is

defined in Eq. (6). The Lindbladian only involves operators acting on the system, and not the probe. Therefore,
when considering the observable A = fi,σf

′
pr, it is tempting to pull the probe operator f ′pr outside the evolution

superoperator, so that it can combine with the other probe operator in B. Indeed, this is precisely what is done when
calculating fermionic Green’s functions in closed systems where L = −i[H, ·]. However, when the system is open,
it is possible for fermions to move between the system and the environment (not to be confused with the probe),
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which leads to jump operators Li that are superparity odd. In this case, we cannot ignore the presence of the probe
operators, because L†[A] will include a term L†ifi,σf

′
prLi, which differs from the näıve expression (L†ifi,σLi)f

′
pr by a

minus sign. In other words, even though f ′pr is a probe operator, its anticommutation with the jump operators means
that the evolution of the product fi,σf

′
pr doesn’t factorize as the product of time-evolved operators fi,σ(t) and f ′pr.

This can be remedied by defining a ‘dummy’ Majorana fermion operator ηd, having no dynamics of its own, and
including it such that the correct anticommutation relations are obeyed. Specifically, one can verify that L†[fi,σf ′pr] =

ηd L†[ηdfi,σ]f ′pr, since η2
d = 1. This allows probe operators to be pulled out of the system evolution superoperator,

such that Green’s functions can be defined using operators that pertain to the system only. Specifically, the physically
meaningful definition of the time-evolved operator fi,σ(t) appearing in Eq. (13) should be:

fi,σ(t) := ηd e
L†t[ηdfi,σ]. (S11)

In practice, we will not explicitly write out the dummy Majorana fermion, but instead understand that it is implicitly

included in any expression of the form eL
†t[fi,σ]. Alternatively, we can modify all the fermion-superparity-odd jump

operators by Li → ηdLi, in which case the usual expression eL
†t[fi,σ] can be used without modification.

Degenerate Green’s functions. Having dealt with the above issue, we now show that steady-state Green’s
functions corresponding to fermions with opposite spin are related in a simple way due to microreversibility. We first
consider the quantity

Tr[eL
†t(fi,σ)f†j,τq] = Tr[Q(eL

†t(fi,σ)f†j,τ )] (S12)

= Tr[T Q(eL
†t(fi,σ)f†j,τ )]∗ (S13)

= Tr[T Q(eL
†t(fi,σ))T (f†j,τ )]∗ (S14)

= Tr[eLt(T Q(fi,σ))T (f†j,τ )]∗ (S15)

= στ Tr[eLt(qfi,−σ)f†j,−τ ]∗ (S16)

= στ Tr[(qfi,−σ)eL
†t(f†j,−τ )]∗, (S17)

where we have used Tr[A] = Tr[T (A)]∗ in (S13), T [AB] = T [A]T [B] in (S14), the definition of microreversibility in

(S15), T [fi,σ] = σfi,−σ in (S16), and Tr[AeLt(B)] = Tr[eL
†t(A)B] in (S17).

Let us now define the following generalizations of retarded Green’s functions:

Giσ;jτ ≡ −iΘ(t)
(

Tr[eL
†t(fi,σ)f†j,τq] + Tr[f†j,τe

L†t(fi,σ)q]
)

(S18)

= −iΘ(t)
(
στ Tr[fi,−σe

L†t(f†j,−τ )q]∗ + στ Tr[eL
†t(f†j,−τ )fi,−σq]

∗
)

(S19)

= −iΘ(t)
(
στ Tr[eL

†t(fj,−τ )f†i,−σq] + στ Tr[eL
†t(fj,−τ )qf†i,−σ]

)
(S20)

= −iΘ(t) (στGj−τ ;i−σ(t)) , (S21)

where in (S20) we have used: Tr[AB] = Tr[A†B†]∗ and [eL
†t(A)]† = eL

†t(A†). So indeed we find that steady-state
Green’s functions for opposite spin labels are related to each other in a simple way for systems with microreversibility.
We have confirmed these expressions numerically for the example system described in the main text.

Non-fermionic systems. As mentioned in the main text, the Kramers’ degeneracy of the Lindbladian only arises in
fermionic systems, but not in bosonic or spin systems, even though the latter have a Kramers-degenerate Hamiltonian
when the total spin is a half-integer. The differences between fermionic vs. non-fermionic open systems becomes
apparent when we consider how linear response functions are constrained by microreversibility and TRS, in analogy
to Eq. (S21). Regardless of particle statistics, detailed balance implies [Ref. [1], Eq. (2.2)]:

Tr[A(t)Bq] = Tr[B̃(t)Ãq], (S22)

where Ã := T [A]† and similar for B̃. Suppose for the sake of simplicity that β = 0 and hence q ∝ I. Then, by
decomposing A and B in terms of right and left eigenoperators of L, respectively, the left-hand side of the above can
be written as a linear combination of terms Tr[ri(t)lj ] = eΛitδij , and thus without loss of generality the condition

becomes Tr[ri(t)li] = Tr[l̃i(t)r̃i]. (The same arguments can in principle be generalized to β > 0 by defining a new set
of operators l′i which are left eigenoperators of L with respect to the non-standard inner product 〈A,B〉q = Tr[A†Bq].)
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In a spin system, we find that l̃i = ri, which ensures that the above condition can be satisfied, regardless of whether
or not L possesses any degeneracies. The same relation cannot hold true for fermionic superparity-odd eigenoperators,
because it would contradict with Eq. (S6) (when one sets q ∝ I). The only way for the Green’s function identity to
hold is if ri and l̃i are independent eigenoperators, which as we proved above implies that they are degenerate. Thus,
fermionic systems differ from spin systems in that they cannot be made to satisfy (S22) without degeneracies in the
spectrum of L.

Kramers’ degeneracy in quantum channels. We briefly note that a similar Kramers’ degeneracy can be found
in thermal quantum channels, which can describe the discrete time evolution of a system coupled to a non-Markovian
bath. Define a quantum channel and its adjoint:

E(x) =
∑
i

EixE
†
i , E†(x) =

∑
i

E†i xEi. (S23)

The condition for trace preservation of the channel implies: E†(I) =
∑
iE
†
iEi = I, which is the only condition

that the Kraus operators (Ei) need to obey to be a proper channel. Suppose we further impose microreversibility:
E† = Q−1T −1ET Q where Q, T are defined as before. It is easy to show that the thermal state q is a steady state
(eigenoperator of E with eigenvalue 1). For physical fermionic channels, the channel superoperator can be split into
even and odd superparity sectors: E = Diag[E+, E−]. Our analysis implies that the odd superparity sector E− must
be twofold degenerate.

As an example, the channel superoperator could represent the completely-positive-trace-preserving map for time-
dependent Lindblad evolution: E = exp(

∫
L(t)dt). If the instantaneous Lindbladians L(t) obey microreversibility

at all times, then so should the channel superoperator E . The odd-superparity sector of E will then have a twofold
degeneracy.

2. KRAMERS’ DEGENERACY IN QUADRATIC MODELS

We show that “quadratic Lindbladians” can host a twofold degeneracy in their single-particle spectrum in the
absence of microreversibility, as long as the system-environment coupling respects time-reversal symmetry. This is
in contrast to the (quartic) models studied in the main text, where spectral splitting can emerge due to a non-
equilibrium environment even if all couplings respect TRS. The importance of microreversibility is therefore only
apparent in quartic models.

Consider a quadratic Hamiltonian H =
∑
ij Hijαiαj in the presence of linear dissipators Lµ =

∑
lµ,iαi, where

αi are Majorana fermions. All terms in the master equation are quadratic in fermion operators, which implies
that the Lindbladian can be split into superparity sectors: L = L+ + L−. Define the superoperators: e†j(ρ) =
[αjρ + (Pρ)αj ]/2, ej(ρ) = [αjρ − (Pρ)αj ]/2, where αj are Majoranas, and P is the parity superoperator. Then we
can express L+ as

L+ = 4i
∑
ij

(Zjie
†
iej) + (Yije

†
ie
†
j) =

∑
i

εiβ
†
i β
′
i, (S24)

where Z = H + iRe[M ], Y = Im[M ], M = lT l∗, εi/(4i) are the eigenvalues of Z, and Re[εi] < 0 [2, 3]. Analogously

L− = 4i
∑
ij

(Zjieie
†
j) + (Yijeiej) =

∑
i

εi +
∑
i

(−εi)η†i η
′
i. (S25)

The first term εm ≡
∑
i εi is a negative offset, then excitations have a positive real energy. The many-body eigenvalues

are thus built from single-particle eigenvalues {εi}.
Consider a spin-1/2 Hamiltonian with TRS:

H =
1

2
(α)THα, α = (a1,+, b1,+, . . . , a1,−, b1,−, . . .)

T , (S26)

where a, b are Majoranas which transform via Tai,σT
−1 = σai,−σ, T bi,σT

−1 = −σbi,−σ, and H = UH∗U†. We include
arbitrary linear dissipators which transform into each other (up to a phase) upon action of the symmetry operator:

Li,+ =
√
γifi,+, Li,− =

√
γifi,−, T fi,+T

−1 = fi,−, Tfi,−T
−1 = −fi,+. (S27)
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The dissipators can be expanded in terms of Majoranas: Li,+ = ~li,+ · α,Li,− = ~li,− · α, which defines the matrix
M = lT l∗. We now show that M = UM∗U†:

UM∗U† = U(l†l)U† =


~li,−
−~li,+

...


T 

~li,−
−~li,+

...


∗

= M, (S28)

where we have used U~l†i,+ = ~lTi,−, U
~l†i,− = −~lTi,+ in the second equality. In the last equality, we have used the fact that

the Lindbladian is invariant under a relabeling and a change of sign of the dissipators. This expression implies that
the spectral matrix Z = H + iRe[M ] satisfies: Z = UZTU†, U2 = −I, which ensures that the single-particle spectrum
is twofold degenerate. Note that we have not imposed microreversibility (detailed balance) for this result. Quadratic
Lindbladians are thus special in the sense that the odd superparity sector can host a degeneracy in the absence of
thermal equilibrium (unlike the examples in the main text).

3. MICROREVERSIBILITY FROM TRS-INVARIANT SYSTEM-BATH COUPLING

Here, we demonstrate that the Lindbladian of a Markovian open system will respect the microreversibility condition
Eq. (5) if time-reversal symmetry is imposed on the system and bath as a whole. Before any Markovian approximation
is made, the system and bath can be described by a Hamiltonian

Htot = HS ⊗ IB + IS ⊗HB +HSB , (S29)

where HS , HB are the system and bath Hamiltonians, respectively, and HSB couples the two. Without loss of
generality, we can decompose the latter as [4]

HSB =
∑
α

Aα ⊗Bα, (S30)

where Aα, Bα are Hermitian matrices.
We suppose that the bath is initialized in a thermal Gibbs state ρB = Z−1

B e−βHB , where β = 1/T is the inverse
temperature, and ZB = Tr e−βHB is the partition function for the bath. Then define two-time correlators Γαβ(t) =
Tr[Bα(t)Bβ(0)ρB ], where Bα(t) = eiHBtBαe

−iHBt. Hermiticity of Bα implies that

Γαβ(t)∗ = Γβα(−t). (S31)

The expectation values 〈Bα〉 := TrBαρB can always be made to vanish by replacing Bα → Bα − 〈Bα〉, and adding a
term Aα to HS , which does not change Htot. We also define the ‘lowering’ operators Aα(ω), which are the components
of Aα that decrease the energy of the system by ω. More concretely,

Aα(ω) =
∑

ε′−ε=ω
ΠεAαΠε′ , (S32)

where Πε is a projector onto the eigenspace of HS with eigenvalue ε.
In order for the open system to be Markovian, the two-time correlation functions must decay over a timescale τm

that is sufficiently short, and the system-bath coupling HSB is sufficiently weak. If these criteria are met, then one
can derive an expression for the Lindbladian in terms of the components of the microscopic Hamiltonian (S29) [4]

L[ρ] = −i[HS +HLS , ρ] +
∑
ω

∑
αβ

Γ̃αβ(ω)

(
Aβ(ω)ρAα(ω)† − 1

2

{
Aα(ω)†Aβ(ω), ρ

})
, (S33)

where Γ̃αβ(ω) =
∫

dteiεtΓαβ(t) is the Fourier transform of the two-time correlation functions, which is a Hermitian
matrix due to (S31). Here, we have defined the Lamb shift Hamiltonian HLS =

∑
ω,α,β Sαβ(ω)Aα(ω)†Aβ(ω), where

Sαβ(ω) =
∫

dt sgn(t)eiεtΓαβ(t), which is Hermitian and commutes with HS .
Now, TRS of the combined system and bath implies that HS and HB are each TRS-invariant, and that TSB [Htot] =

Htot, where the superoperator TSB acts as TSB [O] = (US⊗UB)O∗(U†S⊗U
†
B) for any operator O over the system-bath

Hilbert space. The operator US is the unitary part of the TRS transformation acting on the system, as appears in
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Eq. (2), and similarly UB is a unitary operator acting on the bath, which we leave unspecified for full generality. In
terms of the decomposition (S30), we have

US [Aα]∗U†S =
∑
β

uαβAβ UB [Bα]∗U†B =
∑
β

[u−1]βαBβ (S34)

for some matrix u. Hermiticity of Aα, Bα implies that u is a real matrix, and T 2 = P implies that [uu∗]αβ = pαδαβ ,
where pα = +1 (−1) if Aα is a fermion parity even (odd) operator. The above conditions generalise the notion
of ‘weak’ symmetries described in Ref. [5] to include antiunitary symmetry operations, with the difference that we
impose restrictions on the microscopic Hamiltonian, rather than the emergent master equation.

Now, if the bath is in thermal equilibrium at inverse temperature β, then this imposes a Kubo-Martin-Schwinger
(KMS) condition (or ‘detailed balance’) on the spectral functions Γαβ(ω) [6]:

Γ̃αβ(−ω) = e−βωΓ̃βα(ω). (S35)

Furthermore, since HB is TRS-invariant, we can use the transformation property (S34) to determine how the two-time
correlation functions transform under TRS

Γαβ(t) = Z−1
B Tr

[
eiHBtBαe

−iHBtBβe
−βHB

]
= Z−1

B Tr
[
UB

(
eiHB(t+iβ)Bαe

−iHBtBβ

)∗
U†B

]∗
= Z−1

B

∑
γδ

[u−1]γα[u−1]δβ Tr
[
e−iHB(t−iβ)Bγe

iHBtBδ

]∗
= Z−1

B

∑
γδ

[u−1]γα[u−1]δβ Tr
[
Bδe

−iHBtBγe
iHB(t+iβ)

]
=
∑
γδ

[u−1]γα[u−1]δβΓδγ(t). (S36)

The above can be Fourier transformed to obtain an analogous condition for Γ̃αβ(ω).
With all these identities in hand, we are ready to begin our proof. We start by showing that the Gibbs state for

the system ρG = Z−1
S e−βHS (where ZS = Tr e−βHS is the system partition function) is a steady state. We have

L[ρG] =
1

ZS

∑
ω

∑
αβ

Γ̃αβ(ω)

(
Aβ(ω)e−βHSAα(ω)† − 1

2

{
Aα(ω)†Aβ(ω), e−βHS

})
=

1

ZS

∑
ω

∑
αβ

Γ̃αβ(ω)Aβ(ω)e−βHSAα(ω)† − 1

2
Γ̃βα(ω)

{
Aβ(−ω)Aα(−ω)†, e−βHS

}
=

1

ZS

∑
ω

∑
αβ

(
Γ̃αβ(ω)e−βωAβ(ω)Aα(ω)† − Γ̃βα(ω)Aα(−ω)Aβ(−ω)†

)
e−βHS = 0. (S37)

In the first equality, we use [HLS , HS ] = 0. The second equality involves a swap of labels α and β, and uses relation
Aα(−ω) = Aα(ω)†, which can be verified using (S32). The third equality requires the relation e−βHSAα(ω)† =
Aα(ω)†e−β(HS+ω), and finally we replace ω → −ω in the second term and employ Eq. (S35).

Now we verify that Eq. (5) is satisfied. Recall that Q[A] = qA for any operator A, and here q = ρG is the steady-
state density matrix. We can separate out L = Lc +Ld, where Lc[ρ] = −i[HS +HLS , ρ] contains the coherent part of
the evolution, and the remainder Ld contains the dissipative part. Then the coherent part of the right-hand side of
Eq. (5) acting on an arbitrary density operator ρ gives (remembering that T and T −1 are antiunitary superoperators)

Q−1 T −1 Lc T Q [ρ] = ρ−1
G · T

−1

[
− i
[
HS +HLS , T [ρGρ]

]]
= +iρ−1

G

[
T −1[HS +HLS ], ρGρ

]
= +i

[
HS +HLS , ρ

−1
G ρGρ

]
= L†c[ρ], (S38)

where we have used the fact that that HS +HLS is TRS-invariant and commutes with ρ−1
G . Now the dissipative part
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is

Q−1 T −1 Ld T Q [ρ] = ρ−1
G · T

−1

[∑
ω

∑
αβ

Γ̃αβ(ω)

[
Aβ(ω)ρGρAα(ω)† − 1

2

{
Aα(ω)†Aβ(ω), T [ρGρ]

}]]

= ρ−1
G

∑
ω

∑
αβγδ

[u−1]αγ [u−1]βδΓ̃αβ(ω)∗
(
Aδ(ω)ρGρAγ(ω)† − 1

2

{
Aγ(ω)†Aδ(ω), ρGρ

})

= ρ−1
G

∑
ω

∑
γδ

Γ̃γδ(ω)

(
Aδ(ω)ρGρAγ(ω)† − 1

2

{
Aγ(ω)†Aδ(ω), ρGρ

})

=
∑
ω

∑
γδ

Γ̃γδ(ω)

(
e−βωAδ(ω)ρGρAγ(ω)† − 1

2

{
Aγ(ω)†Aδ(ω), ρGρ

})
=
∑
ω

∑
γδ

Γ̃δγ(−ω)Aδ(ω)ρGρAγ(ω)† − 1

2
Γ̃γδ(ω)

{
Aγ(ω)†Aδ(ω), ρGρ

}
, (S39)

having used the transformation properties of Aα under T −1 [Eq. (S34) with u replaced by u−1] in the second equality;

Eq. (S36) in the third equality; and Eq. (S35) in the final equality. This can be compared to L†d

L†d[ρ] =
∑
ω

∑
γδ

Γ̃γδ(ω)∗
(
Aδ(ω)†ρAγ(ω)− 1

2

{
Aδ(ω)†Aγ(ω), ρ

})

=
∑
ω

∑
γδ

Γ̃δγ(ω)

(
Aδ(−ω)ρAγ(−ω)† − 1

2

{
Aδ(ω)†Aγ(ω), ρ

})
, (S40)

having used Aα(−ω) = Aα(ω)†. Direct comparison verifies that (S39) and (S40) are indeed equal, thus confirming
that Eq. (5) is satisfied.

4. LINEAR RESPONSE IN OPEN QUANTUM SYSTEMS

This section shows that the retarded Green’s function in Eq. (13) in the main text can be directly probed in
tunneling spectroscopy experiments (after taking the Fourier transform from the temporal to the frequency domain).
We demonstrate that the standard formula for closed systems also applies to open quantum systems upon a
generalization of operator time evolution.

Kubo formula. Consider a general Markovian dynamics in the form

d

dt
ρ =

(
L0 + λL1(t)

)
ρ, (S41)

where L0 is the unperturbed Lindbladian, λL1(t) is time-dependent perturbation superoperator, and λ is a small
perturbation parameter. Assume L0(t) = L1Θ(t − t0) for some initial time t0, where Θ(t − t′) is the Heaviside step
function. We also choose the initial state to be the steady state of the unperturbed system, ρ(t0) = ρSS defined as
L0ρSS = 0. In the lowest order of perturbative expansion over λ, the system’s dynamics can be represented by a
Dyson series,

ρ(t) = ρSS + λ

∫ t

t0

dt′ exp (L0(t− t′))L1 exp(L0t
′)ρSS +O(λ2)

= ρSS + λ

∫ t

t0

dt′ exp (L0(t− t′))L1ρSS +O(λ2).

(S42)

Now let us consider the time-dependent expectation value of a local observable O defined as O(t) = Tr (Oρ(t)). Its
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dynamics can be expressed using Eq. (S42) as

O(t) = 〈O〉SS + λ

∫ t

t0

dt′ Tr (O exp (L0(t− t′))L1ρSS) +O(λ2)

= 〈O〉SS + λ

∫ t

t0

dt′ Tr
(
ρSSL†1 exp

(
L†0(t− t′)

)
O
)

+O(λ2)

= 〈O〉SS + λ

∫ t

t0

dt′ Tr
(
ρSSL†1O(t− t′)

)
+O(λ2),

(S43)

where 〈O〉SS = TrOρSS, O(t) = exp(L†0t)O, and L†0,L
†
1 are conjugate Liouvillian operators as defined in Eq. (6) in

the main text. We focus on unitary perturbation, L1 = −i[H1, · ], where H1 is perturbation Hamiltonian. Extending
t0 → −∞, we obtain

O(t) = 〈O〉SS − iλ
∫ ∞
−∞

dt′Θ(t− t′)
〈

[O(t− t′), H1]
〉

SS
+O(λ2). (S44)

For unitary dynamics, this expression coincides with the conventional Kubo formula.

Tunneling spectroscopy. To measure the spectral properties of the system, we assume that the system of interest
is connected to a tunneling probe as shown in Fig. 1 in the main text. The probe contains a reservoir of electrons able
to tunnel into the system, thus generating an electric current. The dependence of the current on the probe’s chemical
potential, i.e. differential conductance, can be used to find the spectral function of the system.

Let us consider Eq. (S41) applied to a joint fermionic system-probe configuration. Without the perturbation, we
assume that the system and the probe are decoupled, i.e. the unperturbed Liouvillian has the form L0 = LS0 + LR0 ,
where LS0 and LR0 are Liouville operators acting on system or the probe, respectively. Also, we assume that the
initial state is a product state, ρSS = ρSSS ⊗ ρRSS. The coupling between the system and the probe is produced by the
perturbation

H1 =
∑
µν

(
Tµνf

†
µbν + h.c.

)
= B +B†, (S45)

where fµ and bν are Fock operators for the system and the probe respectively, Tµν are tunnelling coefficients, and
B =

∑
µν Tµνf

†
µbν . Here and below µ and ν are generalized indices that incorporate several quantum numbers,

including the electron’s position and spin.
The tunneling current is defined through the change of the probe’s electron number ND =

∑
ν b
†
νbν , namely

I := iλ[H1, ND] = −iλ
∑
µν

(
Tµνf

†
µbν − h.c.

)
= −iλ(B −B†). (S46)

Using the Kubo formula in Eq. (S44), we obtain

I(t) = 2λ2Re

∫ ∞
−∞

dt′Θ(t− t′)
(〈[

B†(t− t′), B
]〉

SS
−
〈[
B(t− t′), B

]〉
SS

)
, (S47)

where B(t) =
∑
µν Tµνf

†
µ(t)bν(t) including fµ(t) := ηd exp(LS†0 t)[ηdfµ] and bν(t) := ηd exp(LR†0 t)[ηdbν ], where ηd is

dummy Majorana fermion operator as defined in Eq. (S11) (see discussion in Section 1). Assuming that the probe is
in the normal (i.e. not superconducting) state, the last term in Eq. (S47) vanishes.

I(t) = 2λ2Re

∫ ∞
−∞

dt′Θ(t− t′)
∑
µν

∑
µ′ν′

T ∗µνTµ′ν′

(
〈f†µ(t− t′)fµ′〉SS〈bν(t− t′)b†µ′〉SS − 〈fµ(t− t′)f†µ′〉SS〈b†ν(t− t′)bµ′〉SS

)
= 2λ2Re

∫ 0

−∞
dτ
∑
µν

∑
µ′ν′

T ∗µνTµ′ν′

(
G<µµ′(τ)D>

νν′(−τ)−G>µµ′(τ)D<
νν′(−τ)

)
=

∫ ∞
−∞

dω

2π
I(ω),

(S48)

where G<µµ′(τ) = −i〈f†µ(τ)fµ′〉SS and G>µµ′(τ) = −i〈f†µfµ′(τ)〉SS are the greater and the lesser Green’s function,

D<
νν′(τ) and D<

νν′(τ) are similar expressions for the probe in terms of bν , and I(ω) are the Fourier components of the



8

tunneling current defined as

I(ω) = λ2
∑
µν

∑
µ′ν′

T ∗µνTµ′ν′

(
G<µµ′(ω)D>

ν (ω)−G>µµ′(ω)D<
ν (ω)

)
. (S49)

Let us assume that the probe’s reservoir of fermions is at thermal equilibrium at zero temperature and bν are eigen-
modes of the reservoir. Then, the expression for probe’s Green’s functions takes the form

D>
νν′(ω) = −iδνν′Ãν(µ+ ω)

(
1− nF (µ+ ω)

)
, D<

νν′(ω) = iδνν′Ãν(µ+ ω)nF (µ+ ω), (S50)

where nF (x) = Θ(x) is zero-temperature Fermi distribution, µ is probe’s chemical potential, and Ãν is the probe’s
spectral function.

Assuming Ãν(V + ω) ' Ãν depends weakly on the chemical potential V , and introducing coefficients Jµµ′ =

2λ2
∑
ν T
∗
µνTµ′νÃν , we obtain the expression for the differential conductance

∂I(ω)

∂µ
=
∑
µµ′

Jµµ′ImGRµµ′(ω)δ(ω + µ), (S51)

where δ(x) is the Dirac delta function, GRµµ′(ω) = G<µµ′(ω) + G>µµ′(ω) is the Fourier transform of the time-domain
retarded Green’s function defined in Eq. (13) in the main text. Choosing appropriate filtering Jiσ′,jσ′′ ∝ δijδσ′σ′′δσσ′ ,
we can measure spin-polarized current characteristics,

∂Iσ
∂µ
∝ ImGRiσ(−µ). (S52)

Thus, changing the chemical potential µ, we can probe the spectral function of the system.

[1] G. Agarwal, Z. Phys. A 258, 409 (1973).
[2] T. Prosen, New J. Phys. 10, 043026 (2008).
[3] M. van Caspel, S. E. T. Arze, and I. P. Castillo, SciPost Phys 6, 26 (2019).
[4] H. Breuer and F. Petruccione, The Theory of Open Quantum Systems (Oxford University Press, 2002).
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