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Entanglement bounds on the performance of quantum computing architectures
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There are many possible architectures of qubit connectivity that designers of future quantum computers will
need to choose between. However, the process of evaluating a particular connectivity graph’s performance as a
quantum architecture can be difficult. In this paper, we show that a quantity known as the isoperimetric number
establishes a lower bound on the time required to create highly entangled states. This metric we propose counts
resources based on the use of two-qubit unitary operations, while allowing for arbitrarily fast measurements and
classical feedback. We use this metric to evaluate the hierarchical architecture proposed by A. Bapat et al. [Phys.
Rev. A 98, 062328 (2018)] and find it to be a promising alternative to the conventional grid architecture. We also
show that the lower bound that this metric places on the creation time of highly entangled states can be saturated
with a constructive protocol, up to a factor logarithmic in the number of qubits.
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I. INTRODUCTION

As the development of quantum computers progresses
from the construction of qubits to the construction of
intermediate-scale devices, quantum information scientists
have increasingly begun to explore various architectures for
scalable quantum computing [1–4]. Researchers have quan-
tified the cost imposed by moving from one architecture to
another [5,6] and optimized the placement of qubits on a fixed
architecture [7–9]. Experimentalists have also begun to test
different architectures in laboratory settings [10,11].

In this work, we are interested in developing tools to
evaluate the relative performance of different architectures.
Here, “architecture” refers to the connectivity graph that
defines the allowable elementary operations between qubits.
We propose a natural metric based on entanglement measures.
When several physical models are represented by a graph
G = (V, E ), with a set of vertices V corresponding to qubits,
and a set of weighted edges E corresponding to two-qubit
operations (where the weights denote the maximum rates of
operations), a useful metric is given by what we dub the
“rainbow time,”

τRB(G) = max
F⊂V,|F |� 1

2 |V |
|F |
|∂F | , (1)
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where |∂F | denotes size of the boundary of F , i.e. the total
weight of edges connecting F and F̄ = V − F .

We show that the rainbow time is a lower bound on the
time required to create a highly entangled state on the graph
(i.e., states of N qubits with O(N ) bipartite entanglement).
It is also the reciprocal of a well-studied graph quantity
known as the isoperimetric number [12]. We note that this
lower bound holds even when measurement and feedback are
allowed to speed-up entanglement generation, such as in the
case of Greenberger-Horne-Zeilinger states [13]. In contrast
to Ref. [14], where architectures are evaluated assuming that
only unitary operations are permitted, our results apply to the
more general setting that allows nonunitary operations.

As a complementary result, we show that this lower bound
is nearly tight—a procedure that distributes Bell pairs us-
ing maximum-flow algorithms nearly saturates this bound
to produce O(N ) entanglement across any bipartition, up to
O(log N ) overhead. This suggests that beyond providing a
bound, the rainbow time would be a useful witness to the
speed at which entanglement can actually be generated.

II. PHYSICAL MODEL

In this paper, we evaluate the performance of quantum
architectures with a connectivity graph given by G. Each
vertex in the graph represents a single data qubit, and an
edge exists between two vertices if two-qubit operations can
be performed between them. We interpret the edge weight
wi j between vertices i and j as representing bandwidth, so
that higher-weighted edges are capable of performing more
two-qubit operations in a single unit of time.

We consider an example physical model where the edge
weights represent the rate of distribution of entangled pairs
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FIG. 1. Illustration of how a model with ancilla mediator qubits
can be abstracted into one in which only data qubits and edge weights
are tracked. In panel (a), each module (blue dashed circle) contains
one data qubit (red) and several ancilla mediator qubits (green) that
form Bell pairs with other modules. In panel (b), the module as a
whole is represented by blue circles, while the ancilla mediator qubits
are now represented by edge weights. Only the states of the data
qubits are tracked.

as in Ref. [15]. Each vertex is a small module that contains a
data qubit and some ancilla qubits. In each unit of time, Bell
pairs are generated between the ancilla qubits on the edges
of the graph, which can then be used to perform two-qubit
gates on the data qubits [16,17]. The process of moving from
this model to an abstracted connectivity graph is illustrated
in Fig. 1. We assume that measurements, classical commu-
nication, and intra-module unitaries are arbitrarily fast, such
that the bottleneck is given by quantum operations between
modules. For example, this model can describe a trapped-
ion system which uses photonic interconnects to generate
entanglement between modules as in Refs. [18,19]. In this
framework, vertex degrees and total graph edge weights rep-
resent required ancilla overheads, justifying their use as cost
functions in Ref. [14].

While, for simplicity, we will focus in the main text on the
above model, our results also apply to other physical models,
up to constant-factor overheads. For example, since any two-
qubit operation between data qubits can be performed by
consuming two Bell pairs [20], the above model is equivalent
to a model where edge weights are proportional to rates of
two-qubit operations. In Appendix A, we show in more detail
how to extend our results to this model, as well as to a
model where edge weights represent coupling strengths in a
Hamiltonian.

III. ENTANGLEMENT CAPACITY

Given a graph G, we wish to bound the total possible
increase in a given entanglement measure after n rounds of
entanglement distribution over its links. Suppose we fix a
bipartition of the graph into two subgraphs supported on
vertex subsets F and F̄ . We consider a general entangle-
ment measure, S, which quantifies the bipartite entanglement
between F and F̄ . We assume the following axioms: S is
zero for product states ρF ⊗ ρF̄ , additive between nonentan-
gled regions, S(ρFF̄ ⊗ τFF̄ ) = S(ρFF̄ ) + S(τFF̄ ), and nonin-
creasing under local operations and classical communication.
Entanglement measures that obey these axioms include the
entanglement cost, the distillable entanglement, and the en-
tanglement of formation [21,22]. All of these measures are
identical to the von Neumann entropy for pure states.

By the result of Ref. [21], the entanglement after n rounds
is bounded by n times the maximum single-round entangle-
ment. We will therefore bound the entanglement generated in
one round, going from ρ to ρ ′. To produce ρ ′, we begin with
ρ and then generate entanglement on the graph edges. This
means that wi j ancilla Bell pairs are generated for each edge
(i, j) crossing the boundary ∂F . The total number of Bell pairs
is therefore |∂F |, the sum over all the weights,

|∂F | =
∑

i∈F, j∈F̄

wi j . (2)

Ignoring ancillas purely local to F or F̄ , the resulting state
is ρ ⊗ ρ

⊗|∂F |
Bell . The final state ρ ′ is then generated by local

operations, assisted by classical communication, on this state.
We denote the state that results from an arbitrary round
of local operations and classical communications on ρ as
LOCC(ρ). Therefore, our axioms for S allow us to write

S(ρ ′) = S
[
LOCC

(
ρ ⊗ ρ

⊗|∂F |
Bell

)]
� S

(
ρ ⊗ ρ

⊗|∂F |
Bell

)
= S(ρ) + |∂F |S(ρBell ),

⇒ S(ρ ′) − S(ρ) � |∂F |S(ρBell ). (3)

Working in the units of S(ρBell ) = 1, we refer to this up-
per bound on the change in entanglement, �S � |∂F |, as
the entanglement capacity of the (F, F̄ ) bipartition in the
graph G.

IV. RAINBOW STATES

We now define a highly entangled state whose creation
serves as a benchmark for the performance of a quantum
computing architecture.

Entanglement makes a useful benchmark for any quantum
computer because it can be shown that computations that
do not produce entanglement can be efficiently simulated
classically [23–25]. Further motivation for producing highly
entangled states can be found in quantum simulation, where
a quantum simulator of general applicability ought to be
capable of representing and simulating highly entangled states
[26].

To select a particular entangled state for benchmarking,
we consider “rainbow states.” In 1D contexts, for even N , a
rainbow state is one in which qubits i and N − i are maximally
entangled [27,28]. The state itself is maximally entangled
across a bipartition between the first N/2 qubits and the rest.

We extend this construction to arbitrary graphs. Suppose
we consider a set of qubits V and any subset F ⊂ V , with
the requirement that |F | � 1

2 |V |. Denote by Fi the ith vertex
of F using an arbitrary ordering, and similarly use F̄i to index
vertices in the complement F̄ . We can then define a “rainbow”
state as one in which qubit Fi and qubit F̄i form a Bell pair, and
any additional qubits in F̄ are left in the state |0〉. This state is
illustrated for a particular choice of F and ordering in Fig. 2.
Note that this construction is only well-defined if |F | � 1

2 |V |,
as otherwise there will not be enough data qubits in F̄ to form
Bell pairs with all the data qubits in F . The arbitrary ordering
allows multiple rainbow states to be defined from the same F .

033316-2



ENTANGLEMENT BOUNDS ON THE PERFORMANCE OF … PHYSICAL REVIEW RESEARCH 2, 033316 (2020)

FIG. 2. An illustration of how a rainbow state is defined on an
arbitrary subgraph F . Here, gray lines represent the connectivity
graph of allowed two-qubit interactions, while doubled black lines
represent maximally entangled qubit pairs. Qubits without a doubled
line are assumed to be in state |0〉.

V. RAINBOW TIMES AND ISOPERIMETRIC NUMBER

Using the model for quantum architectures in which each
edge weight of a graph G denotes the rate of entanglement
generation across that edge, we can calculate the lower bound
on the time required to create a rainbow state, according to the
entanglement capacity. For any vertex subset F we define this
time as

t (F ) = |F |
|∂F | = number of qubits in F

entanglement capacity of (F, F̄ )
. (4)

As we have shown, the entanglement capacity corresponds
to the total weight of edges across the boundary, which
constrains the amount of entanglement that can be distributed
to the subsystem F from its complement F̄ in unit time.

Although there are many choices for a highly entangled
physical state associated with the subset F that would be hard
to create, here we argue why the above metric t (F ) suffices for
most considerations. Although there are many different states
with O(N ) entanglement which could be used to evaluate
graphs, the rainbow state is easy to conceptualize and create.
Since any bipartite entangled state can be converted either
to or from Bell pairs through entanglement concentration or
dilution [29], the rainbow state offers insight into the time
required to create a general bipartite entangled state. Further-
more, rainbow states arise as ground states of novel models in
condensed-matter physics [30], and thus the ability to create
them can be important for quantum simulation. The difficulty
to create rainbow states is also recognized in Ref. [13]. While
there is freedom in defining a physical rainbow state via the
pairing of vertices in F with those in F̄ , the precise choice of
pairing does not affect the minimum time required to create
the state according to the entanglement capacity, t (F ). While
different rainbow states that share a common subset F may
differ in how quickly they can be created, t (F ) serves as the
common lower bound on the creation time for all of them, and
thus we will focus on that metric here.

We will now use t (F ) to evaluate the quantum architecture
G, the larger graph that contains F as a vertex subset. To
do this, we find the maximum t (F ) given G. Note that this
is not the same as maximizing entanglement entropy, which
would simply yield half the graph without any consideration
of the graph structure. Instead we ask: Of all the maximally
entangled states we can build by bipartitioning V into F
and F̄ , which of them is slowest to build according to the

entanglement capacity? We call the associated quantity t (F )
the rainbow time of the graph G and denote it τRB(G), as
defined in Eq. (1).

The rainbow time has a simple and attractive interpretation,
can be directly connected to quantum computing tasks, and
is applicable to various physical models of computation. In
addition, it can be directly connected to a quantity known as
the isoperimetric number h(G) [12], sometimes also known as
the Cheeger constant, which is well-studied in graph theory
and computer science [31–33]. As we have defined it, the
rainbow time is simply τRB(G) = 1/h(G) [34]. Thus, aiming
to minimize the rainbow time (so that large entangled states
can be easily created) in a quantum architecture is equivalent
to maximizing the isoperimetric number. An “isoperimetric
set” is a vertex subset F that achieves t (F ) = τRB(G). Often,
isoperimetric numbers appear in the context of expander
graphs, which are constructed to possess large isoperimetric
numbers [35] and are used to prove important results in
complexity theory [36–38]. Intuitively, a small isoperimetric
number (large τRB) means that a graph has bottlenecks, and
a sizable subset can easily be disconnected by removing
relatively few edges. This also implies that an architecture
with large τRB is more prone to becoming disconnected due
to the failure of a small number of edges.

Even though computation of the exact rainbow time is
NP-hard for general graphs [12], it can be approximated to
within an O(

√
log N ) factor [39]. There are also efficiently

computable bounds on the rainbow time, including ones using
the eigenvalues of the graph Laplacian [12]. Furthermore,
for many specific graphs, we can evaluate the rainbow time
efficiently. In Appendix B, we have done this for the complete,
star, and grid graphs, as well as the hierarchical products and
hierarchies presented in Ref. [14]. In particular, we compare
hierarchies to d-dimensional grids and show that, for some pa-
rameters, hierarchies have lower rainbow time and lower total
edge weight than grids, making them promising architectures
for quantum computing.

VI. CREATING RAINBOW STATES

So far we have shown that rainbow time τRB serves as a
lower bound for generating maximum entanglement across
any bipartition of the system. We now examine whether this
bound can be saturated, in the sense that one can create a
rainbow state across any bipartition in time Õ(τRB). We will
show that for a general graph, there is an explicit protocol that
prepares a rainbow state in time no more than 	τRB ln |F |
 for
any bipartition where F is the smaller subset, indicating that
the bound τRB is tight up to a logarithmic factor.

We begin the proof by mapping the problem of creating
rainbow state to the MaxFlow problem in computer science
[40]. Here, we restrict our attention to quantum architectures
on graph G = (V, E ), where the edge weights are integers that
represent the number of Bell pairs that can be generated across
the edge per unit time. Suppose we are given arbitrary vertex
subsets F and K , where |F | = |K| � |V |/2, and K ⊂ F̄ . To
create a Bell state between a given pair of nodes in a single
time step, we can specify a path connecting them on the graph
G, generate Bell pairs on each edge along that path, and then
perform entanglement connection on each internal node to
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FIG. 3. An illustration of the fictitious nodes added to the isoperi-
metric set, F , and a set of equal size K (encircled by purple dashed
line), to create a flow network. The new fictitious nodes, s and t ,
appear as green triangles connected to every node in F and K ,
respectively; the original nodes and edges are pink (in F ) and blue (in
F̄ ) circles. The edges have weight one. The flow, shown by arrows,
transfers 	|F |/τRB
 = 2 units of entanglement across the bipartition.
Gray, dotted edges are not used by the flow.

convert the string of Bell pairs into one long-distance Bell
pair. We can create many distant Bell pairs in this way during
a single time step by specifying many paths. However, the set
of paths must not use any edge more often than the weight of
that edge allows for, since by definition the weight of an edge
limits the number of Bell pairs the edge can generate in a unit
time step. Thus, we can interpret the weight of each edge as its
capacity, and the collection of paths as a flow of entanglement
from F to K , as illustrated in Fig. 3. Suppose we now attach a
fictitious source node s to each node in F , and a fictitious sink
node t to every node in K . Then the problem of maximizing
the number of Bell pairs simultaneously generated between
F and K is the same as the problem of maximizing the flow
from the source s to the sink t . The latter problem is known as
MaxFlow, visualized in Fig. 3, and an explicit protocol to give
the maximum possible amount of flow can be found efficiently
via, e.g., the Ford-Fulkerson algorithm [41]. Note that if all the
edge weights are integers, a flow of maximum value exists in
which the flow carried by each edge is also an integer [42].

To demonstrate that a flow approach yields an efficient
creation of a rainbow state, we invoke the MaxFlow-MinCut
theorem, which says that the maximum flow has the same
value as the minimum cut [40]. Here, a “cut” means a bi-
partition of the graph separating s and t , and its value is the
total weight of all edges that cross the bipartition. By finding
a lower bound on the value of all possible cuts in a graph, we
show that a flow larger than or equal to this bound must exist.

Suppose that we now consider any cut of the graph into
some arbitrary pair of subsets {s} ∪ S and {t} ∪ T . The bound-
ary of this cut will consist of edges from s → T , S → t , and
S → T . Its magnitude can be written as

|Cut(S, T )| = |T ∩ F | + |S ∩ K| + |∂S|, (5)

since s and t are connected only to nodes in F and K ,
respectively, and the edges in S → T are just the boundary
of S in the original graph. To evaluate |∂S| = |∂T |, we will
assume that |S| � 1

2 |V |, meaning we can apply the isoperi-
metric condition |S| � |∂S|τRB. (If this is not the case, then a
near-identical argument can be made applying this condition
to T .) To account for cases where τRB < 1, we will write this

as |∂S| � m|S| where m = min (1, 1/τRB). We then note that

|∂S| � m|S| � m(|S ∩ F | + |S ∩ K|)
� m(|F | − |T ∩ F | + |S ∩ K|). (6)

By inserting this lower bound for |∂S| into Eq. (5), we obtain

|Cut(S, T )| � (1 − m)|T ∩ F | + (1 + m)|S ∩ K| + m|F |.
(7)

Since we know m � 1, we obtain the final bound on the cut
magnitude,

|Cut(S, T )| � m|F |. (8)

If m = 1 (i.e., τRB � 1), then it follows that the value of
the smallest cut is greater than |F |, meaning that a flow exists
of magnitude at least |F |, which creates the rainbow state in
a single round. If m < 1 (i.e., τRB > 1), then we find that a
flow exists of magnitude |F |/τRB [43]. Once |F |/τRB nodes
are entangled, they can be disconnected from s and t , and the
process repeated on a new set of nodes F1 ⊂ F . Therefore,
after n rounds of computation, the remaining set of nodes
waiting for entanglement Fn is produced by removing 1/τRB

of the nodes in set Fn−1, with F0 = F , allowing us to compute
the maximum size of Fn inductively:

|Fn| �
(

1 − 1

τRB

)
|Fn−1|

�
(

1 − 1

τRB

)n

|F | < e−n/τRB |F |. (9)

Once |Fn| < 1, the process is complete, as there are no frac-
tional nodes. It follows that 	τRB ln |F |
 rounds suffice to
complete the entangling process.

VII. OUTLOOK

In this work, we have presented a new metric for evaluating
proposed architectures for quantum computers. While we
have proven that any vertex subset F can have a rainbow
state prepared in 	τRB ln |F |
 time, test simulations on many
example small graphs suggest that flow-based algorithms can
create rainbow states in 	τRB
 time. It is thus possible that
the logarithmic factor can be removed and that the rainbow
time lower bound is fully tight and saturable. In addition,
although our argument suggests that for any bipartition of
the system, there exists a rainbow state that can be created in
	τRB ln |F |
 time, other rainbow states (where the connections
between node pairs are permuted) may take longer. It would
be interesting to upper bound the creation time of arbitrary
rainbow states using tools from classical network theory such
as routing time [44,45].

Finally, another open question is how the entanglement
capacity, used here in terms of the rainbow time, can be
applied to the analysis of quantum algorithms. While the
rainbow time is not enough to provide an upper bound on
the time-complexity of running a quantum algorithm on a
given quantum architecture, it can provide a lower bound
when the amount of entanglement required in the algorithm
is known. References [46,47] explore the question of how
entanglement grows during Shor’s algorithm and in adiabatic
quantum computing. These complement other results showing
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that low-entanglement systems can be simulated efficiently on
a classical computer [23,48]. Rainbow time can also be used
to benchmark algorithms for compilation and gate decompo-
sition of quantum circuits, by comparing their realized circuit
depth to this theoretical minimum required time.
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APPENDIX A: ENTANGLEMENT CAPACITIES
ON VARIOUS PHYSICAL MODELS

In this Appendix, we will derive the entanglement capacity
for several different physical models that can correspond to
a graph. Consider a graph, G, and select a subset of the
vertices, F . We then want to show that the maximum amount
of entanglement that can be created between F and F̄ in unit
time is proportional to the size of the boundary, |∂F |. We will
allow arbitrary constant factors, and discuss how this bound
arises in two different physical situations. As in the main text,
we consider entanglement measures S on two regions so long
as S obeys the following rules:

(1) Additively distributive over the tensor product, so
S(ρ ⊗ σ ) = S(ρ) + S(σ ) if ρ and σ are supported on both
sides of the bipartition.

(2) Zero for states which are a product of states on each
region, S(ρF ⊗ ρF̄ ) = 0.

(3) Nonincreasing after any operation which is local to
each region, even if we permit classical communication.

In the main text, we showed how to apply these axioms to
the analysis of a case in which computation was performed
by the production and consumption of Bell pairs. Here we
also look at a gate model of computation and a case in which
the graph describes the limits on a time-dependent interaction
Hamiltonian.

1. Unitaries

In this model, each graph edge of weight wi j represents
the capability to perform wi j unitaries between qubits i and

j in a time step. These unitaries are freely chosen by the
experimenter. For two qubits, the ability to apply multiple
unitaries is no different from the ability to apply an arbitrary
unitary. However, we are considering cases where the qubits
are part of a larger system, meaning we may wish to perform
unitaries in sequence on different pairs to perform a more
complicated computation.

We note that every two-qubit unitary can be performed
using two Bell pairs as a shared resource and applying local
operations. This can be easily seen in the following process:

(1) Alice and Bob start with a data qubit each and two
Bell pairs shared between them. They wish to implement an
arbitrary two-qubit unitary using only local operations and
classical control.

(2) Alice uses one Bell pair and classical communication
to teleport her qubit to Bob.

(3) Bob uses his local operations to perform the desired
two-qubit gate.

(4) Bob teleports Alice’s qubit back to her.
Therefore, the state ρ ′ can be obtained from the state ρ by

using local operations and classical communication (LOCC)
and consuming up to 2|∂F | Bell pairs in the process. Since
LOCC cannot increase S, it follows that

S(ρ ′) � S
(
ρ ⊗ ρ

⊗2|∂F |
Bell

)
(A1)

⇒ �S � 2|∂F |S(ρBell ). (A2)

This suggests that the ability to perform arbitrary unitaries is
up to twice as powerful as the ability to distribute arbitrary
Bell pairs, which makes sense, as an arbitrary two-qubit
gate cannot necessarily be performed with one Bell pair (for
instance, SWAP requires two) [20]. Two Bell pairs, however,
suffice to implement any arbitrary two-qubit unitary. In any
case, this still yields an entanglement capacity �S = O(|∂F |)
bound as desired.

2. Hamiltonians

We will now consider a case in which the graph describes a
Hamiltonian, possibly time-dependent. The graph will restrict
the strength of these Hamiltonians. If we assume that G =
(V, E ), then the Hamiltonian can be written as a sum over the
two-qubit operations:

H (t ) =
∑

(i, j)∈E

hi j (t ). (A3)

We then impose the condition

∀t : ‖hi j (t )‖ � wi j, (A4)

where wi j is the i- j edge weight. We can then apply the “small
incremental entangling” (SIE) theorem [49]. In particular, we
apply the special case used in Ref. [50] to bound the total
amount of entanglement generated by this Hamiltonian. If H
is a sum of pairwise Hamiltonians hi j acting on qubits, then
the time-rate of entanglement generation on a set F of sites is∣∣∣∣dSF

dt

∣∣∣∣ � 36 log(2)
∑

i∈F, j∈F̄

‖hi j‖. (A5)
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FIG. 4. Examples of a hierarchical product (left) and a weighted
hierarchy (right).

Here, SF is the von Neumann entropy of the reduced density
matrix on the region F . This can be derived from Eq. (3)
of Ref. [50], and specifying two-body terms and qubit sites,
but the result could be extended to qudits or general k-body
interactions. The sum over Hamiltonian norms, in the graph
context, corresponds to a sum over graph edges. Since every
Hamiltonian strength is limited by the corresponding edge
weight,

∑ ‖hi j‖ � ∑
wi j = |∂F |. Therefore, we can specif-

ically say that for this case, �SF = O(|∂F |). Many other
entanglement measures, such as entanglement of formation
or entanglement cost, can be related to the von Neumann
entropy [22]. In particular, many entanglement measures on
mixed states can be defined as a weighted sum over pure
state components; since none of the pure states can increase
dramatically in entanglement under this process, the entan-
glement measure on the mixed state is similarly limited.

APPENDIX B: APPLICATION TO HIERARCHICAL
PRODUCT AND HIERARCHIES

In this Appendix, we calculate the rainbow times for the
hierarchical products and hierarchies of Ref. [14]. A hierar-
chical product is a graph product denoted G � H in which
|G| copies of H are connected at their root (first) vertices
by the graph G. By iterating this process, we can create a
hierarchy, in which higher-level graphs connect lower-level
identical subhierarchies. We also extend this concept to that
of a weighted hierarchy, in which the edges on level i have
weight αi. We write a k-level hierarchy with a vector of
weights �α as G��αk , where G is the base graph. Finally, if
αi = αi−1, so that edge weight scales geometrically with the
level of the hierarchy, then we simply write G�αk . Some
examples are shown in fig. 4.

To calculate the rainbow time for a hierarchical product, we
make use of the result from Ref. [12] that there must exist an
isoperimetric set [a vertex set F such that τ (F ) = τRB(F )] that
is connected and whose complement F̄ is connected. There-
fore, we will look at all possible subgraphs of H1 � H2 where
both F and F̄ are connected. From these, we will search for
the one with the largest τ (F ). Since some isoperimetric set is
guaranteed to exist in this set of subgraphs, this maximization
over τ (F ) in this set will also give us τRB(H1 � H2). We will
begin by specifying three cases, illustrated in fig. 5. These
cases cover all possible subsets with the right connectedness
properties and therefore allow us to find the maximizing set
for the graph and τRB(H1 � H2).

(a) (b) (c)

FIG. 5. Three classes of subgraph used in our proof. Circles
represent vertices in F , squares are vertices in F̄ , and dashed lines
are edges in ∂F . (a) A situation in which part of one copy of H2

is in F . (b) A situation in which the division between F and F̄ lies
entirely in H1. (c) A situation in which all but one of the copies of H2

are entirely contained in F .

One such set would cover part of one copy of H2. However,
note that if the root vertex of H2 were included in F , then
we would have to include all the descendants of H2, since
otherwise F̄ would not be connected. Therefore, this class
will only include subsets of H2 which do not include the
root vertex. In this case, we must maximize over all possible
subsets of H2 to find the maximum τ (F ). This may seem like
it would yield τRB(H2); however, in this instance we can pick
subsets of H2 which make up a majority of H2, which is not
allowed for τRB. We define the unrestricted rainbow time as

uRB(G) = sup
F⊂G\G1

τ (F ). (B1)

Here, G \ G1 refers to G with its first vertex removed. There-
fore, any set from this class will offer a candidate rainbow
time of at most τ (F ) = uRB(H2).

The second class of candidate sets would cross one or more
copies of H2. Since F must be connected, the path between
these copies must be included in F , which means the root
vertices of each H2 that connect to each other via H1 must also
be in F . Then, as shown above, the entire copy of H2 must
be included. As a result, this case is equivalent to choosing
copies of H2 and either entirely including them in F or entirely
excluding them. This problem reduces to dividing up H1, and
then calculating as if each vertex had an effective volume of
|H1|. Therefore, we can find the maximum τ (F ) of these sets
by simply finding τRB(H1) and scaling it by |H2|.

The final class of sets F which meets the connectedness
criteria would be an F which includes all of H1 and then all but
one copy of H2 completely, with perhaps some of the remain-
ing H2 also included. However, this F would necessarily be
larger than half of the total graph H1 � H2, and therefore we
can discard it as a candidate set for determining the rainbow
time. We combine the first two options and conclude that

τRB(H1 � H2) = max [uRB(H2), |H2|τRB(H1)]. (B2)

We now seek to apply this to hierarchies G��αk . Just as
before, if a vertex is included in F , then we must also include
in F all its descendants in the hierarchy; otherwise, the com-
plement F̄ will not be connected. Therefore, all bipartitions
can be reduced to choosing a particular level of the hierarchy
to cut—on that level, either a vertex will be included or not
included, and this must apply to all of its descendants as well.
Every bipartition can then be mapped to a bipartition of G, but
one where every vertex is scaled by |G|i−1 due to the size of
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each subhierarchy [note that the large number of vertices not
in F do not contribute to τ (F )]. In addition, τ (F ) must also
be modified by the edge weight, which we define to be αi on
level i.

There is one important difference between the top (kth)
level and all others, which arises from the constraint that
|F | � 1

2 |G��αk|. A cut on the top level must not include more
than half of the highest-level copy of G, while all lower levels
can use any cut at all as long as it does not include the
root vertex. Whatever level we cut, the cut depends only on
the base graph G, with each node standing for |G|i−1 total
nodes below it. Therefore, we can write the overall τRB as a
maximization over these options:

τRB(G��αk ) = max

(
|G|k−1

αk
τRB(G), sup

i<k

|G|i−1

αi
uRB(G)

)
.

(B3)

For specificity, we will evaluate the case where G = Kn,
the complete graph, and αi = αi−1, which was proposed in
Ref. [14] as an architecture. Here, the maximization over
lower levels [the second term in Eq. (B3)] can be reduced to
either to the first level or the k − 1 level, since we simply have
to pick the largest element in a geometric sequence defined
by n/α. We can write the resulting maximization as a choice
between three options,

τRB
(
K�αk

n

) = max

[
1,

( n

α

)k−1 2

n
,

( n

α

)k−2
]
. (B4)

Whereas one might have expected two options to arise (cut
at the top or at the bottom), we actually have three. For α >

n, the edges grow in capacity too quickly for the increased
volume to make a higher-level cut worthwhile, so the optimal
cut is at the bottom, yielding a constant scaling with n. Two
other options appear at n > α, where cutting higher up the
hierarchy allows for greater volume of qubits in F without too
much penalty caused by changing edge weights. The reason
there are two strategies is that it may be possible to cut a larger
portion of a lower hierarchy and exploit the split between τRB

and uRB. [For Kn, in particular, the cut that includes all but the
root vertex satisfies uRB(Kn).]

TABLE I. Important statistics for graphs. Here, only the asymp-
totic scaling with N is written. In addition to the rainbow time τRB

for each graph, we also include the total weight of all edges w,
and the maximum graph degree �. Rainbow times for graphs other
than hierarchies can be found in terms of isoperimetric number in
Refs. [12,32].

Graph Name τRB w �

KN N−1 N2 N
SN 1 N N
d-dimensional Grid N1/d N 2d
K�αk

n Nmax(0,1−logn α) Nmax(1,logn α) logn N

To place these results in context, we compare the rainbow
time of K�αk

n to the total rainbow time of other graphs. To
do this, we write the rainbow time in terms of the total
number of qubits in a graph, N , and concern ourself with the
overall scaling. For the purpose of comparison, we consider
hierarchies where the number of levels scale logarithmically
as k = logn N , while α, n are constant parameters independent
of N . In this language, τRB(K�αk

n ) = 	(Nmax (0,1−logn α) ). We
compare this to the rainbow time of some other graphs in
Table I. References [12,32] give the isoperimetric number
for KN , SN (the star graph of N nodes) and grids (which are
Cartesian products of paths). Satisfying sets for these graphs
are: for KN and SN , an arbitrary half of the nodes; for grids,
a hypercube placed in one corner that takes up half the total
volume.

One goal would be to identify a set of parameters where
a hierarchy outperforms a d-dimensional grid architecture.
We are most concerned with comparing to the d-dimensional
grid because the other candidates we present, KN and SN ,
both have very large degree, making them impractical for
scalable architectures, although both have been used for small
quantum devices [10]. We find that the rainbow time of the
hierarchy with base graph Kn and scaling constant α will
be better (smaller) than that of the grid if α > n(d−1)/d . If it
also holds that n > α, then the hierarchy will accomplish this
with a total edge weight scaling identically as the grid. It is
possible to achieve a smaller prefactor in this scaling under a
suitable choice of n, α; for example, when d = 2, the choice
of n = 3, 4 and α = n1−1/d gives lower total edge weight for
the hierarchy than the grid. We conclude that a hierarchy K�αk

n
with α ∈ [n1−1/d , n) has both lower rainbow time and lower
total edge weight than a d-dimensional grid of qubits.
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