Integrated Photonic Quantum Information Processing

Abstract: In recent years, photonics has become one of the key contenders in the race to build large-scale quantum computers. The prominence of photonics as a quantum information technology is underscored by the fact that it is one of only a handful of technology platforms which has achieved a quantum advantage, i.e., a large-scale quantum system which outperforms a classical supercomputer at some well-defined computational task [1 2].

Non-Abelian symmetry can increase entanglement entropy

Abstract: The pillars of quantum theory include entanglement and operators' failure to commute. The Page curve quantifies the bipartite entanglement of a many-body system in a random pure state. This entanglement is known to decrease if one constrains extensive observables that commute with each other (Abelian ``charges''). Non-Abelian charges, which fail to commute with each other, are of current interest in quantum information and thermodynamics.

Twisting Up Atoms Through Space and Time

One of the most exciting applications of quantum computers will be to direct their gaze inwards, at the very quantum rules that make them tick. Quantum computers can be used to simulate quantum physics itself, and perhaps even explore realms that don’t exist anywhere in nature. But even in the absence of a fully functional, large-scale quantum computer, physicists can use a quantum system they can easily control to emulate a more complicated or less accessible one. Now, researchers have coached their ultracold atoms to do a new dance, adding to the growing toolkit of quantum simulation.

Electrons Take New Shape Inside Unconventional Metal

One of the biggest achievements of quantum physics was recasting our vision of the atom. Out was the early 1900s model of a solar system in miniature. Instead, quantum physics showed that electrons meander around the nucleus in clouds that look like tiny balloons. These balloons are known as atomic orbitals, and they come in all sorts of different shapes—perfectly round, two-lobed, clover-leaf-shaped. That’s all well and good for individual atoms, but when atoms come together to form something solid—like a chunk of metal, say—the outermost electrons in the atoms link arms and lose sight of the nucleus they came from, forming many oversized balloons that span the whole chunk of metal. Now, researchers have produced the first experimental evidence that one metal—and likely others in its class—have electrons that manage to preserve a more interesting, multi-lobed structure as they move around in a solid.