Multidimensional Quantum Walks
While quantum walk frameworks make it easy to design quantum algorithms, as evidenced by their wide application across domains, the major drawback is that they can achieve at most a quadratic speedup over the best classical algorithm. In this work, we generalise the electric network framework – the most general of quantum walk frameworks, into a new framework that we call the multidimensional quantum walk framework, which no longer suffers from the aforementioned drawback, while still m
Will quantum interior point methods be practical? An end-to-end resource analysis for portfolio optimization incorporating improvements to state preparation
Despite much work on quantum algorithms, there are few examples of practically relevant computational tasks that are known to admit substantial quantum speedups for practical instance sizes after all hidden costs and caveats are considered. Portfolio optimization (PO) is a practically important problem that can be solved via Quantum Interior Point Methods (QIPMs) via a standard mapping to a Second-Order Cone Programs (SOCP). Preliminary numerical evidence in prior literature was consistent with an asymptotic quantum speedup. But will this solution be practical?
Exciton Condensates Through the Years
Abstract: Excitons are composite Bosons formed by pairing electrons and holes in a crystal.The idea that excitons might Bose condense dates to the 1960’s but has often been surrounded by controversy. My talk will focus on the important lessons learned
about exciton condensates from work on two-dimensional electron systems in the
quantum Hall regime, starting around twenty years ago, and on new opportunities
Learning properties of interacting fermionic systems with limited hardware
Interacting fermionic systems can model real world physical phenomenon directly. Many people are working on finding efficient and practical ways to determine properties of these quantum simulators. Specifically, estimating correlation functions, that reveal important properties such as coulomb-coulomb interaction strength and entanglement spreading, is a crucial goal. The well know classical shadows formalism allows one to find linear properties of a quantum state by reusing outcomes from simple basis measurements.
Stabilizer codes: the continuous, the infinite, and the exotic
Traditional stabilizer codes operate over prime power local-dimensions. For instance, the 5-qubit code and 9-qubit code operate over local-dimension 2. In this presentation we discuss extending the stabilizer formalism using the local-dimension-invariant framework to import stabilizer codes from these standard local-dimensions to other cases.
JQI Undergraduate Researcher Deven Bowman Named 2023 Goldwater Scholar
Deven Bowman, a JQI undergraduate researcher and junior physics and mathematics double-degree student at the University of Maryland, has been awarded a 2023 scholarship by the Barry Goldwater Scholarship and Excellence in Education Foundation, which encourages students to pursue advanced study and research careers in the sciences, engineering and mathematics.
Investigating the feasibility of a trapped atom interferometer with movable traps
Abstract: Atom interferometers can be used to obtain information about accelerations and fields, whether this may be in the investigation of fundamental aspects of physics, such as measuring fundamental constants or testing gravity, or as part of a measurement device, such as an accelerometer [1,2,3]. Achieving adequate coherence times remains a priority, and this can be realized by holding the atoms in a trap as an alternative to increasing their free fall time [1].
Investigating the feasibility of a trapped atom interferometer with movable traps
Atom interferometers can be used to obtain information about accelerations and fields, whether this may be in the investigation of fundamental aspects of physics, such as measuring fundamental constants or testing gravity, or as part of a measurement device, such as an accelerometer [1,2,3]. Achieving adequate coherence times remains a priority, and this can be realized by holding the atoms in a trap as an alternative to increasing their free fall time [1].